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EVALUATION

The need for developing new tools and techniqlies for producing mrorc

reliable low cost software, as noted In such doCb1*at - the CowWinc,

Control Information Processing CCIP-85 Study (Information Processing/Data

Automation Implications of Air Force Command and Control Requirements in

the 1980's), has led to attempts to analyze the nature and types of soft-

ware errors in order to be able to accurately predict error occurences,

and to be able to accurately predict the reliability of software produced.

Many different types of models of the software debugging process have

been formulated for' Lhis purpose. However, a technique that has not been

adequate'y :pplied to software error3 is the use of statistical regression

analysis to relate error occurrences to various structural, complexity,

and prograrmmer-related characteristics of a software package.

This effo)rt was initiated in _z.iunse to the CCIP-85 $1;I; and this

need for applying regression techniques to software errors, and fits into

the goals of RADC TPO No. 5, Software Cos- Reduction (formerly RADC TPO

No. 11, Software Sciences Technology), in particular the area of Scftware

Quality (Software Modeling). The report focuses on the analysis, using

multiple linear regression techniques, of software error daza and related

structDral, complexity, and programmer-related variables extracted from

two large Department of Defense command and control software projects

totalling over 250,000 lines of higher orJear language source code. Tihe

importance of performing this analysis is that it represents the first

attempts to use linear regression techniques for comparing different

Ix
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software projects, in order to determine those characteristics that statis-

tically inpact on the occurrence of software errors.

The conclusions drawn under this.analysis will, therefore, provide

new insights into those factors that influence software errors. In

addition, results of this analysis will be used as the basis for future,

continuing analysis for collection errors using regression techniques, and

will provide a baseline for collection of software characteristics on

future software projects that will support regression analysis of soft-

ware errors. Finally, the results of this and future similar statistical

analysis efforts will provide the necessary understanding of, and insights

into, the software development process, through the understanding of those

factors that lead to the occurrence of software errors, that is required

in order to produce the high quality, low cost software desired.

ALAN N. SUKERT, Captain, USAF
Project Lngineer
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1.0 INTRODUCTION

This document is the final technical report for the
Statistical Prediction Model study, RADC Contract No. F30602-
76-C-0213. This eight month study focused on the statistical
prediction of programming errors using a wide range of pro-

gram structure/complexity variables and selected programmer

variables as predictors. The authors view this study as one

of many continuing studies which need to be performed that
further investigate how programmers, program characteristics,
management methods, and software testing and design factors
influence and contribute to errors in programs.

This report is organized topically into eight interrelated
sections and one technical appendix. A description of the

major topics covered in each section is as follows:

9 Section 1.0 presents a background discussion on the

role and importance of the prediction of programming
errors for improving software quality and reliability.
The purpose of this study is also stated in this section.

* Section 2.0 presents a detailed discussion of background
information on the two data samples that were analyzed

by this study. This discussion focuses on the software
development environment, software testing considerations,
programming error definition and classification, predictor
variables, and statistical characteristics of both samples.

* Section 3.0 briefly discusses selected limitations of

the data in both samples that could affect the predictability

of errors in this study. Also, three important preliminary
analysis findings are discussed as they relate to the
error prediction equations that were developed for this

study.

"?q eII II i



"" Section 4.0 presents a brief discussion of the multiple
linear regression analysis method and the stepwise

regression procedure that were used to obtain the error
predictions for this study.

"" Section 5.0 discusses various operational and analytical
considerations and decisions made which pertain to the

error prediction equations developed for this analysis.

"• Section 6.0 presents a summary of the technical results

of this study as they pertain to the predictability of
errors and error rate in both data samples. A detailed
presentation and discussion of the results for each
sample follows this summary.

" Section 7.0 presents additional analysis of tne error

rate per program measure and its relationship with the

programmer rating and workload variables, and also its
interesting relationship with total source instructions

as observed in this study.

"* Section 8.0 contains the major conclusions and recom-
mendations of this study. Recommendations are discussed
which pertain to (1) improving the consistency of pre-

diction of programming errors in future software error
prediction studies, (2) further research requirements,
and (3) proposed data collection support tools and

techniques.

"" Appendix A contains a brief technical discussion of the

measure of programming errors to be analyzed in software
error prediction studies and its dependence upon the
method of testing used during the software test period.

1-2
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1.1 Background

Software quality has many facets, including availability,

ease of maintenance, CPU run-time required, and reliability.

Precise definitions of quality or its components do not exist.

However, software reliability, in spite of a lack of quantita-

tive definition, has received a great deal of attention and

rightly so, due to its pervading influence on the other aspects

of quality. Without a reliable software system, availibility,

run-time, maintenance, etc., are meaningless.

In spite of the ambiguity and lack of consistency in the

definitions of software reliability, one thing common to them

all is that they do include programming errors. The analysis

and prediction of programming errors then becomes an area thatL

would contribute to the assessment and improvement of software

quality.

Analysis of errors becomes important from the standpoint

of determining their possible causes so that management con-

trols may be exercised to reduce them. Prediction is important

as a tool for the analysis, as well as contributing to the

testing and certification, of a software system. If, for

example, fewer errors have been found than a prediction formula

indicates are present, then more testing should be performed.

One approach that is being considered for providing

researchers and management with a more definitive understand-

ing of factors which affect software quality and reliability

1-3
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is that of predicting programming errors through the use of

statistical regression models. It is through the use of these

prediction models that:

(1) estimates of the software reliability during each

phase of the software development effort could be

provided;

(2) the amount of further testing required to achieve

or insure a yiven level of program quality could

be estimated; and

(3) the relative effects of selected management control and

both design and coding techniques on the reduction

of programming errors, as aids for improving soft-

ware quality and reliability, could be assessed.

Although recent studies have demonstrated the feasibility

of using linear models and regression analysis methods to pre-

dict errors in programs, additional studies are needed which

apply these methodologies in order to assess their value and

importance for error prediction purposes.

1.2 Purpose

The purpose of this study in to apply the statistical

method of multiple linear regression analysis to predict pro-

gramming errors, using a variety of variables which relate

to programmer capability, program structure, and program

complexity as predictors of errors. Two distinct data samples
will ba analyzed by this study. Each sample contains data

1-4
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on programming errors and program characteristics collected
for purposes other than this study, and provided by RADC.
Both samples reflect software that was developed by inde-
pendent contractors for different, large-scale, command and
control applications. A combined total of 5539 programming
errors, resulting from 783 programs with a total of 296,595
source instructions, are analyzed.

1-5
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2.0 DESCRIPTION AND CHAPCTERISTICS OF DATA SAIPLES

Two distinct samples of data were analyzed during this

study. Each data sample contains data on both progranmning
errors and numerous program characteristics. Throughout this
report the program characteristics that ar' presented, dis-

cussed, and analyzed are referred to as program structure/program
complexity variables. Although much of this program charac-

teristic data represents, for example, counts of the number of

program instructions of a certain type that may have appeared

i, the program, each individual program characteristic vari-
able can ba assumed to be one of a variety of measures or

estimates of the program structure and/or complexity.

The two data samples are referred to as sample S and

sample T, respectively, throughout this report. The following
sections of this report present bachground information and

other relevant statistics concerning the software development

environments, testing considerations, and error data charac-
teristics of each sample which will be of importance

when evaluating the prediction equation results obtained from
each of tie samples, Table 2-1 presents a brief summary of

the differences which existed between each of these samples on

various gross level project and program characteristics.

2-1
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2.1 Sample S

2.1.1 Software Development Lnvironment

Sample S software, which consisted of 534 programs, was
developed as three command and control systems which for the

purposes of this report are to be referred to as projects M,
B, and P, respectively. This software was developed jointly by
two private industry organizations from mid-1969 through late

1973, and represents an effort of approximately 5500 man-
months. These programs consisted of 181,249 source instruc-

tions written in CENTF•'A an "nglish-like, special purpose,
higher level language that was designed for use only on Central

Logic and Control (CLC) computers. The programs analyzed
represent about 80 percent of the approximately 644 programs with
240,000 source instructions that were written for the entire
command and control application. 'The software development

effort attempted to conform to the traditional approach of
building large software systems:

(1) definition of system performance requirements,

(2) design of functional specifications from .Ahichl pro-
gramming specifications are written,

(3) coding and unit testing of those soft,.ware elements

comprising a process iu'function,

(4) integration testing of the elerents within a

subfunction, and

(5) integration testing of tla system processes.

2-3
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Significant, but not always successful, attempts were made

to write system design specifications and develop software be-

fore the system performance requirements and functional speci-

fications were completed. In projects M and P for example,

serious program design work and coding were initiated during the

period of June through August 1969, although the performance
requirements were not completed until June 1970. Using the per-

formance requirements as a base, a design team from one of the

organizations defined the system functional design requirements

and specifications from which software design teams from both

organizations generated the formal programming design specifi-

cation•. Where these latter specifications did not coincide

with the software already written, the original code had to be

rewritten.
L

A description of the extent to which the new programming
technologies (e.g., structured programming, top-down design,

etc.) were implemented and applied during the development of
each of the three sample S software projects is presented in

Table 2-2 along with several basic program length and error

statistics for each project. It appears from Table 2-2 that
project P was the only project that actually implemented or

applied these new technologies to any large extent.

It is important to note here one final consideration regard-
ing these new technologies as applied in sample S. No informa-

tion is available, other that that which appears in Table 2-2,

to give any indication of how consistently and with what

thoroughness and quality the concepts and principles which
underlie these new technologies were strictly followed in the

programs developed for sample S. Necessarily then, and in line

L with the stated purposes of this research study, no comparisons

2-4
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TABLE 2-2. APPLICATION OF NEW PROGRAMMING TECHNOLOGIES
IN SAMPLE S PROJECTS

MB P

NO. OF PROGRAMS 395 104 35

TOP DOWN DESIGN 1.0%(3) 100•0%(104) 48.6%(17)
STRUCTURED CODE 2.8%C11) 0.0%(0) 65.7%(23)
CHIEF PROGRAMMER 0.0%C0) 0.0%(0) 51.4%(18)

7TAM
PROGRAMMING 0.0%C0) 0.0%(0) 97,1%(34)

LIBRARIAN

AVERAGE SOURCE 345.2 212.3 651.9
INSTRUCTIONS

AVERAGE ERRORS/ 6.8 6.0 6.8
PROGRAM a

AVERAGE ERROR RATE 2.0 2.8 1.0

"aAVERAGE ERROR RATE= A MEASURE OF TOTAL ERRORS FOUND PER

100 LINES OF SOURCE CODE FOR EACH PROJECT.

2-5
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are made or inferences drawn concerning the relative effective-

ness of these technologies for improving software quality and

reliability.

2.1.2 Software Testing Considerations

Each of the three software development projects of sample

S adhered to a basically standard code writing and testing

scheme. One programmer was usually assigned the responsibility

of writing several programs which would subsequently interface

as a single functional unit, with several of these units forming

a subfunction. When a program was compiled error-free and unit

tested, it was combined with its related counterparts to form

a functional unit for element testing. This testing was per-

formed by the programming team and was usually the prerequisite

for submitting a system's subfunctions to the Test arid Integra-

tion (T&I) team. Immediately prior to the T&I phase, all the

subfunctions of a system would be bound together to form that

system's thread. It was this thread which was delivered to

T&I for integration testing. The T&I phase assured that the

subfunctions of a system interfaced properly and represented

the beginning of formal error recording for the software being

tested. Trouble reports describing the error and its severity

were forwarded to the respective programming team for resolu-

tion. To expedite error resolution, patches to the object

code were made prior to resubmission to the T&I group. The

applicable source code was subsequently updated, usually when

a new version of a process was released.

The system integration tests were designed to verify that

the system could respond in certain areas of basic system

capabilities within predicted tolerances. The testing
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required to support the final demonstration or acceptance tests

in each test case was assumed to begin with single-site tests,
in which communications with the rest of the system were usually

simulated. Later tests were built up to include all sites

netted together. Table 2-3 presents the software development

and testing dates that were reported for each ol the three

projects of sample S.

No other specific data was available for this study with

respect to the amount and thoroughness of testing that sample

S programs underwent during the T&I phase of software development.

2.1.3 Definition, Classification, and Collection of Error Data

For sample S, programming errors were defined as those

errors found during the TSI phase which could be attributed to
the programmer and required a change to the program's source

code. At the time this error data was provided, no additional

classification of errors had been attempted. (Presently,

however, there is an effort urdeim1y, 3uipor~ted by RADC, thatý

will result in a thorough classification of the various error

types for the sample S programs being analyzed for this report.)

With respect to error data collectinn for sample S programs,

earl y i~n th~is anri'i fUr i tdi ,-: siol~ 1K.l 1 h; I'-r

sonnel responsible for the sample S data collection revealed

that the data collection on program characteristics may have

been obtained as much as three years after the error data was

collected. This delay is estimated based on the dates provided

in Table 2-3. After the errors were detected, programs were

modified as a direct result of these errors. Programs continued
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to be modified after the T&I phase as part of ithe normal
growth process of the respective systems being: developed.

Since each of the predictor variables in Iample S represent
program characteristic variables, and given that there was no
measure ef the extent to which these program characteris-
tics had been modified between the time when the error
and predictor variable data were collected, a serious question

arose as to the validity of the results obtained from a multiple
regression analysis of this data. This condition might result
in the anomalous position of attempting to predict errors from
data which to some extent at least may have resulted from the
errors.

Additional discussion with personnel responsible for the

sample S data collection indicated that the extent of the
modifications made to the program characteristics as a result

of the errors being corrected was minor. However, it was
apparent from having initially reviewed the sample S data
that the variability of some of the predictor variables was
also minor. Thus, the effect of the minor modifications on the
conclusions drawn from predictor variables with minor vari-
ability became an unknown which could not be assossed.

In order to deal with this problem in such a way that the

data could still be utilized for error prediction purposes,

a decision was made to categorize each of the independent
variables for this sample. This cateqorization procedure
involved examining the range of each independent variable,
grouping the scores into equal intervals, and the assigning
of new scores to the intervals. For example, for one variable
all scores in the interval 0-99 would be rescored as 1; scores
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in the interval from 100-199 would be rescored as 2, etc..

Clearly, this grouping technique when implemented would un-

doubtedly throw away some useful data; it would also eliminate

part of the error due to assuming that code changes after

error counts were insignificant. If modifications to the

program characteristics were indeed minor as had been indicated,

then categorizing the data would give a truer picture of what

these characteristics would have been at error collection time

for all values of the predictor variables except those at the

boundaries of the class intervals. Thus, conclusions drawn

would have relatively more validity.

The categorization procedure was applied to all sample S

predictor variables. Intercorrelation matrices were then
/

obtained for each of the projects which showed the inter-

correlations among the predictors and between the predictors

and the criterion variable, programming errors. Each of these

sets of intercorrelations was then compared with the respective

intercorrelations obtained when the original (uncategorized)

predictor variable values were used. Essentially, no

significant statistical differences were found among the two

sets of correlation matrices for each of the projects. Thus,

after having performed this rather extensive computational

task of categorizing the data and then comparing various sets
of correlation matrices, a firm decision was made to continue

on with the multiple linear regression analysis using the

original data as obtained for sample S.

Based on the above discussion of problems associated with

the sample S error data collection, it should be noted tiiat

any data that is to undergo a secondary analysis is subject

to the same or similar problems that were discovered when

attempting to analyze this data. Accessibility of the sample S

2-10
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personnel led directly to the discovery of these problems.

Other data in the future could be collected by personnel not

as accessible, thus resulting in problems at least as serious,

though undiscoverable.

The problems discovered thus far lead to a strong argument

for (1) identifying or determining what use is to be made of

the data before it is collected, and (2) developing and

providing the necessary data collection instruments, procedures,

formats, and software support systems that can collect and

store repeated snapshots of program characteristics and error

data throughout various phases of the software development

cycle.

2.1.4 Predictor Variables

A list and description of the 54 predictor variables

that were made available for the analysis of sample S programs

is presented in Table B-1 of Appendix B. Variables 56 through

109 were constructed during this study in order to investigate

their effectiveness in predicting error rate/program for this

sample. Further discussion of these variables (i.e., 56-109)

is presented in section 3.0.

Each of these initial 54 predictors was collected as

previously mentioned during December 1974 and January 1975

via an automatic scanner program developed by sample S data

collection personnel. This scanner program could interrogate

source code programs that were written in CENTRAN, ALC, or

PL/I.

2-11



It is important to note that other variables in addition

to the 54 that were collected could have been measured and

collected via this scanner program. For example, Lock Macros

(variable X20) is the only one of several different types of

CENTRAN system macros that was collected separately. All other

system macros used in the program, including lock Macros, are

summed into variable Xl0, System Macros. Basically then,

what variables were collected by sample S personnel clearly

represent the variables hypothesized by thht group to be of

some particular Interest and importance for their own purposes

of analysis, The point made here is that other variables which

may have contributed significantly to the prediction of pro-

gramming errors were not collect-d in the sample S data and

resultantly were not available for review, analysis, and
evaluation by this study. There is a definite need for the

definition of a uniform set of program characteristics that

may be applied to a wide variety of projects. By doing so,

it would be possible to compare the results of one project with

another and thus draw conclusions applicabld to programming in

general, not merely to programming as reflected by one specific

project.

Lastly, with respect to the first 54 predictors it is

important for analysis purposes to identify the various linear

combinations that existed among these variables. Variable Xl

was identified as a linear combination of variables X7, X8, X10,

Xll, X15, X16, X11l, and a variable that was not separately

counted, the number of assignment instructions not involving

arithmetic operations (e.g., A-1; B-5 etc.). System Macros (XlO)

is a linear combination of variables X3, X9, X20, and any other
CENTRAN System Macros. Variable X17, Scaling/Rounding Operations,
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is considered a part of Centran Functions (X16). Variable

X39, Total Variables, is a linear combination of variables X22,

X25, X27, X29, X31, X33, X35, and X37. Variable X40, Total

Variable Frequency, is a combination of variables X23, X24, X26,

X28, X30, X32, X34, X36, and X38. Finally, variable X41,

Total Do Loops, is a combination of variables X18, X19, X42,

X43, X44, X45, X46, and X47.

2.1.5 Characteristics of Sample Data

During the initial phases of the analysis, univariate and

bivariate frequency distributions were obtained for each of

the 54 predictors and for each of the predictor variables with

errors/program. For the dependent variable and most of

the predictor variables the univariate frequency distributions

were asymetric with the higher frequencies concentrated

toward the lower end of the variable and the smaller frequencies

asymptotically spread out toward the higher end. The bivariate

distributions basically showed the existence of a predominant

number of very low to moderate linear relationships existing

between the various predictor variables and programming errors.

There was a clear indication of a tendency toward non-linearity

in many of the relationships between the predictor variables

and errors. Based on these observations it is possible that

better predictions could be obtained by non-linear transforma-

tions, of either or both programming errors and the predictor

variables.

In addition, based on the sample S project statistics

as presented in Table 2-4 and on differences that were observed

between means and measures of variability of predictors be-

tween projects, there was a clear indication that the three
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TABLE 2.4 SAMPLE S PROJECT STATISTICS

ALL
STATISTICS M B P PROJECTS

NO. OF PROGRAMS (WITH C 395 104 35 534

WITHOUT ZERO ERRORS)

TOTAL SOURCE INSTRS. 136,358 22,075 22,816 181,249

TOTAL ERRORS 2,673 622 238 3533

AVG. PROGRAM LENGTH 345.21 212.26 651.89 339.42

AVG. ERRORS/PROGRAM 6.77 5.q8 6.80 6.62

AVG. ERROR RATE 1.96 2.82 1.04 1.95

AVG. ERROR RATE/PGM. 9,42 3.26 1.29 2.51

PERCENT OF CODE WITH 9.8?7 5.40% 0.00% 8,04%
ZERO ERRORS

PERCENT OF PROGRAMS 22.78% 8.65% .00% 18.54%
WITH ZERO ERRORS

NO. OF PROGRAMS CWITH 305 95 35 435

1 OR MORE ERRORS)

TOTAL SOURCE INSTRS. 122,971 20,882 22,816 166,669

TOTAL ERRORS 2,673 622 238 3533

AVG. PROGRAM LENGTH 403.17 219.81 651.8q 424.96

AVG. ERRORS/PGM. 8.76 6.55 6.80 8.12

AVG. ERROR RATE 2.17 2.91 1.04 2.06

AVG. ERROR RATE/PGM. 3.13 3.57 1.29 3.08

NO. OF PROGRAMS (WITH 9o 9 0 99

ZERO ERRORS)

TOTAL SOURCE INSTRS. 13,387 1193 --- 14,580

AVG. PROGRAM LENGTH 148.74 132.56 140.65

SHORTEST/LONGEST PGMS. 6/1047 18/389 6/1047
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sample S projects were quite heterogeneous over a majority of

the data variables. As indicated in Table 2-4 many of the

programs, both short and long, were reported as error free

as a result of testing during the T&I phase. Particularly

for the longer programs, this fact is hard to reconcile with

past experience and logical reasonong on this subject which

would contend that as programs become longer, the number of

paths through the program increases, which in turn increases

the program's complexity, thus increasing the likelihood of a

larger number of errors residing in these longer programs.

Section 3.0 comtains additional discussion about programs with

zero reported errors.
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2.2 Sample T

2.2.1 Software Development Environment

Sample T software consists of 249 programs which repre-

sent the initial delivery of a large command and control

software system. This system was functionally developed as

eight subsystems which for the purposes of this report are

software was jointly developed by two private industry organi-

zations, with one of the organizations being responsible for

77 of the 249 programs that were written. The total programs
consisted of 115,346 source instructions written in JOVIAL J4,

a higher level language which is compatible with the SYMON

operating system. Batch type processing was the exclusive

operating mode used during this software development.

Software development for sample T subsystems followed a
"single increment" development approach and was goverened by

formally specified and approved requirements that had been
defined down to the function level. :Single increment", as
defined for sample T data, refers to a typical development cycle

in which each development phase is performed only once. This
is in contrast to the top-down, multiple increment approach,

where the cycle is repeated several times, first for a system
of stubs and subsequently when the stubs are replaced with
deliverable (i.e., ready to be tested) software.

Structurally, the smallest compilable unit of source code

was the routine or program. Programs were joined to form
functions, functions were joined to form subsystems, and
finally subsystems were joined to comprise the one command
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and control system. This structure was produced by a project

organization based on the function being developed. This

meant that management of sample T software development was

set up in conjunction with the software structure so that

personnel assigned to one work unit, ranging in size from 5

to 15 programmers, produced all the software in one or more

of the functions. No new or advanced programming technologies

were reported as being applied to sample T programs or imple-

mented during their development.

2.2.2 Software Testing Considerations

Testing of sample T software proceeded through five

sequential phases: development, validation, acceptance, inte-

gration, and operational demonstration. Development testing

was informal with all test cases being written and executed

by the program development personnel. No information was

provided regarding the length of time involved in this partic-

ular phase of testing. Validation testing marked the first

phase of formal software testing by an independent test group.

The objective of tests that were developed for both the valida-

tion and acceptance phases was to demonstrate that the sample T

programs did in fact satisfy or meet the formal functional

requirements that had been specified. Each of the tests applied
during these two phases was run at the subsystem level but

was designed to examine software performance at the program,
function, subsystem, and system levels. An important considera-

tion of these two phases was that all testing was performed

on a master configuration and no alteration of the code was

allowed. Acceptance testing consisted of rerunning selected

tests that had been used for validation testing, particularly

2-17
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those that specifically demonstrated the software requirements.
Customer acceptance of the software was dependent upon the

successful completion of these tests.

Integration testing was conducted by an independent con-
tractor whose major re3ponsibility was to demonstrate that
the applications software interfaced correctly with the operat-
ing system and tho system support software. Tests conducted
during this time were similar in structure and formality to
those tests that were used during the validation and acceptance
phases. The operational demonstration phase was a short period
of testing ,ahich followed an operational timeline and which
used an operational data Lase. The objective of tenting during
this period was to deronstrata tCi satisfactory porformance
of the software in the operational environment.

The approximate length of calendar time (as measured in
weeks) involved in each of the four phases of formal testing
for sample T programs was as follows:

Validation 10.3
Acceptance 1.5
Integration 9.5
Operational Demonstration 2.3

With respect to error detection during each of these test
phases, it was reported that each phase found errors which
should have been detected in earlier phases. 'io measures of
the amount or thoroughness of testing were available for
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sample T software. Resultantly, it is not possible to state

what percent of, and to what extent, the code had been exercised

(given the possible range of input values for each test) during

this formal testing period.

2.2.3 Definition, Classification, and Collection of Error Data

For sample T, programming errors were defined as those

errors found during the four stages of formal testing which

could be attributed to the programmer and required a change

to the program's source code. Programming errors were classi-

fied as belonging to one of a variety of error categories which

either (1) described the symptoms of the problem (e.g., output
report has data entries that were not printed or are missing)

or (2) actually identified the cause of the error (e.g., logical

condition not tested which resulted in abnormal program end).

The 2006 programming errors that are analyzed in this

report were aggregated and classified according to nine major
error categories. These categories along with the approximate
percentage of errors that occurred in each are an follows:

Logic 26.0

Data Handling 18.2

Interface 17.0
Data Input/Output 16.4

Computational 9.0

Other 8.5

Data Base 4.1
Data Definition 0.8
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Unfortunately, for the sample T error data provided for

this study, there was no way of knowing which errors belonged

to each of the error categories as indicated. Only recently,

after a majority of the analysis had been completed, was it

possible to obtain a first available version of the automated

data which describes in what programs the particular error type
occurred, the phase of testing in which the error was de-
tected, etc. Necessarily then, no analysis of programming

errors by error type or category was attempted during this
study.

Two important points regarding the error categories as

listed deserve brief mention at this time. First, the indi-

viduals who assigned or dlassified programming errors according

to these software error categories were not the same individuals

who had initially recorded the error in a Software Problem

Report (SPR). The SPR and a closure report which contained an
explanation of the problem and the corrections required to

resolve the problem were usually the main sources of infor-

mation used to retrospectively classify the errors.

Secondly, it was reported by the individuals who classified

the errors that not all errors were necessarily programming

errors, and that the probable source of these errors could be

traced to four development activities:

(1) requirements specifications,
(2) design,
(3) coding, and
(4) maintenance (correction of other errors).
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When the sample T program.,ing errors were classified according

to these probable sources: (1) errors were only able to be

classified either as design or coding errors based on the

available information provided by the SPR and closure report,
and (2) approximately 61'4 of the errors could be attributed
to design and 36, to coding as probable sources !or these

errors. An explanation that was offered for 'this outcome was

that, in their collection of supporting data to .xplain software

error histories, poorly stated requirements or changing inter-

pretations of requirements were offered as reasons for diffi-

culty in developing various programs that were found to be

error-prone.

As previously mentioned, error data for sample T was
collected throughout each of the four staqes of formal systems

testing. Nowever, no information is available as to the dates

for the data collection of the program structure data. If

the program strucLure data was collected pribr to the error

data collection, then the proyramming errors could be considered

as immediately resulting from the various measured and un-

measured program characteristics. On the other hand, if the

program structure data collection was performed after modifi-

cations were made to these program structure variables as a

direct result of correcting for errors found during the formal

test phases, then there exists a sir.,ilar situation as was

discovered for the sample S programs. This problem, for both

samples, is one of several which raises questions as to the

validity of the data that was used for this study. It is

important that researchers are awAre of sources of possible

invalidity in data collection or program selection. The

effects can then be considered in terms of the rsults obtaihed
and the conclusions drawn from the study.
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2.2.4 Predictor Variables

A list and description of the 16 predictor variables

that were provided for the analysis of sample T programs is

presented in Table B-2 of Appendix B. Variables 18 through

31 were constructed during this study to investigate their

effectiveness in predicting error rate/program for this

sample. These variables will be further discussed in

Section 3.0.

Each of the 16 original predictor variables were

collected by means of a scanner progr.m which could interro-

gate source code programs that were written in JOVIAL J4.

The only known linear combinations that existed among these

16 predictors vu&:a as follows: (1) Total Source (TS) was a

linear combination of variables Non-Executable Instructions

(NEX) and Executable Instructions (EX); and (2) Total Inter-

faces (TI) was a linear combination of the two interface vari-

ables, Application Interfaces (AP) and System Interfaces (SYS).

Regarding a more detailed description or definition of

the software-related predictor variables, only a limited

am(unt of more specific information was available. This infor-

mation is as follows: four generic types of executable code

were arbitrarily defined:

I/O I/O refers to JOVIAL defined and SYSTEM

defined input and output statements.

JOVIAL I/O statements include FORMIN,

FORMOUT, DECODE and ENCODE. S)!STEM DISC
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I/O includes ISDAHA and its various entrances.

Examples of SYSTEM TAPE I/O are 'CWRITE,

'WEOF and 'REWIND.

COMPUTATIONAL- These are statements expressing equations

containing arithmetic operators.

Example: AA - BB*CC**2/DD $

DATA HANDLING- These statements effect a simple data

transfer (equality) from one variable to

another and are distinguished from compu-

tational statements.

Exampless XX-YY $, AA($BB+2, DD$) - 'PR *.

LOGICAL- Logical statements establish branches in

the code and include the IF, IFEITH, ORIF,

FOR and GOTO SWITCH statements.

Also, more descriptive information relating to how the

Total Branches (BR) and Interface (AP,SYS) variables were

defined was provided. Total Branches (BR) was described as

including all possible logical branches, resulting from IF,

IFEITH, ORIF, and GOTO-SWITCH name statements. The BR variable

does not reflect the actual number of logical branches the

program will make when it executes. Program-to-program and

program-to-data base interface descriptions were described

as being available from system utility or construct programs.

To this could be added details of the individual interface

(e.g., number of arguments in the calling sequence), the type

of interface (applications, system, user, data base), and the

format of the information passed.
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The two predictor variables, Programmer Rating (RAT)

and Workload (WKLD), were metrics that were constructed

to evaluate programmer performance with respect to (1) selected

programmer-specific criteria and (2) programmer assignment or

job-specific criteria. The evaluation was amde on only those

that had been exclusively developed by one of the two private
industry organizations who shared responsibility for the overall

software development effort. The evaluation was performed by'

the programmer's line management after the project was completed.

Table 2-5 presents the personnel evaluation parameters that
wore used to develop the programmer rating and workload measures

relative to software quality, From these parameters, the
Programmer Rating variable (RAT) was constructed by simply sum-

ming the scores obtained on each of the knowledge, intelligence,
initiative, and responsibility categories. One final point to

consider is that many of the 172 programs for which RAT and
WKLD measures were available were developed jointly by two or

more (up to 15) programmers. For these programs, the RAT and
WKLD measures represent the averages obtained for these vari-

ables over each of the individual programmer's soores.

2.2.5 Characteristicsof Sample Data

Subsystem statistics for sample T are presented in Table
2-6. Clearly these subsystems are quite heterogeneous when

one considers the differences which exist across subsystems
with respect to the number of programs, average errors/programs,

and average error rate/program. One major commonality, however,

that was found over all subsystems was the high intercorrela-
tions which existed between Total Sourc' Instructions (TS)
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and the variable BR, LS, DATA, NEX, and EX. These correla-

tions are reported in Table 2-7. Since each of the variables

within this group was highly related to others by definition

(i.e., TS+NEX + EX, and EX-BR + LS + DATA + other executable

statements appearing in the program), the high intercorrelations
were not surprising. The fact that these intercorrelations

were consistently high and of similar magnitude across all

subsystems is an interesting finding. It is not known whether

this phenomenon can be explained by:

(1) the characteristics of the JOVIAL J4 programming

language, since these high correlations are being

observed not omly over eight heterogeneous sub-

systems but also over numerous dissimilar functions

that were being programmed, or

(2) by the use of the same basic set of programmers
to program similar functions over all subsystems,

or

(3) by the fact that this a universal finding, i.e.,
one which applies to other programming languages

as well.

In general, for all subsystems, each of the univarlate

frequency distributions was highly peaked and demonstrated
minimal to extreme positive skewness. The intercorrelations
between each of the predictors and errors ranged from low to

very high across all subsystems. Generally, these correlations
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were higher than those observed for the predictor variables

with errors for the sample S programs. Also, as in sample S,
a significant number of programs wore reported as error-free

(sae Section 3.1).
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3.0 PRELIMINARY REVIEW AND ANALYSIS OF DATA SAMPLES

3.1 Selected Limitations of the Data

The purpose of this section is to briefly enumerate and
discuss selected limitations of the data in both samples that

could affect or influence the predictability of errors, and
resultantly could affect or limit the generalizability of
conclusions reached in this study.

Data Collection and Definition of Variables - It should

be clear from the preceding discussion of both data samples in
Section 2.0 that serious questions can be raised with respect

to (1) when the data for the predictor variables were collected
vis-a-vis the error data and (2) the limited usefulness of the
predictors' definitions and descriptions for aiding an under-

standing of how each variable may uniquely influence or contri-
bute to programming errors. To be sure, the need exists for

future research projects to carefully identify and define the
variables to be analyzed, discuss why they were selected, and

identify what use is to be made of the data, prior to the actual
d4ta collection. With the definitions presently available,

there is little possibility for any comparisons to be made

between the predictions of both samples, not to mention the

limited possibility for comparison of these predictors with

variables obtained from other projects in which programming

languages other than CENTRAN and JOVIAL-J4 have been used.

Classification and Definition of Errors - For both data

samples a complete classification and detailed definition of

programming error categories were either non-existent or

unavailable to be analyzed for the purposes of this study.
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Clearly without these error classifications and definitions
for each category, analysis is limited to an aggregate or gross
count of errors. Better predictions might very well result
from using total errors of a specific type as the dependent
variable.

Heterogeneity-Within and Between Data Samples - From the
discussion presented in Section 2.0, it is apparent that the
software development environments, software testing conditions,
programming languages, project management methods, and the
command and control functions being programmed were different
in many respects between the two data samples being analyzed.
Furthermore, as evidenced by the statistics presented in
Tables 2-4 and 2-6, there are differences in variability among
the three projects of sample S and among the eight subsystems
of sample T. These differences are further indicative of the
functional differences that existed between each of the projects
and subsystems in the two samples, and the individual differ-
ences that existed among the programmers responsible for the
software development effort. Unquestionably, these differences
or lack of homogeneity between and within the data samples will
restrict the extent to which the prediction equation results
for a given set of program-observations can be compared to
other sample observations.

Thoroughness of Program Testing - For both data samples,
little is known about the thoroughness of testing of all the
783 programs being analyzed in this study. For that matter,
the prediction equations developed in this study are limited
in that they apply to observed errors only. No information is
available as to the latent errors, or those which might be
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found at a later time as a result of more intensive testing
or operational usage of the programs. Most assuredly, given
the increasing manpower and costs in large-scale command and
control software maintenance, and the increasing attention
being paid to the relationship between thoroughness of testing
and software quality and reliability at the DOD software
management level and in the research literature, valid and
reliable measures of program testedness need to be developed
and applied to all ongoing and future software development
efforts.
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3.2 Preliminary Analysis Findings and Observations

Correlations Between Source Instructions and Other

Predictors - For both data samples many of the predictor

variables had moderate to high positive correlations with the

Source Instructions variable (i.e., Xl for sample S, and TS

for sample T). For example, for project M of sample S which

involved 395 of the total 534 programs being analyzed for this

sample, 30 of the 53 predictors had correlations which ranged
from .30 to .98. Similar correlations were also observed for

projects B and P of this sample. For subsystem A of sample T

which had the largest number of program-observations (Nm5l)
of any subsystem, 11 of the 15 predictors had correlations which

ranged from .37 to .99. There too, similar correlations were

observed over each of the remaining subsystems, B thru H. In

fact the consistency of some of these correlations for the BR,

LS, DATA, NEX, and EX variables over the eight subsystems was

reported earlier in Table 2-7. In general for both data samples,

many predictors were also correlated to a similar degree with

other predictors besides Source Instructions. However none of

these predictors was correlated over the large number of vari-

ables with the same magnitude as was Source Instructions.

Generally, when many highly intercorrelated variables are

being used for prediction purposes, serious mathematical prob-

lems result (e.g., the matrix of intercorrelations among pre-

dictors may become singular), which yield an indeterminate

solution to the prediction equation. For this reason, many of
the variables in both samples having very high correlations
with Total Source Instructions were eliminated frojr the analysis.
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For those variables which remained; i.e., those that did
not correlate very highly with Source Instructions, it was
desirable to obtain an additional measure of their contribu-
tion (or correlation) to programming errors with the effect
of Total Source Instructions removed. This consideration leads
directly to the need to "normalize" the predictor variables.

Basically, the effect of source instructions was to be
removed from each of the predictor variables by means of the
normalization procedure. Although several more involved compu-
tational procedures are available as alternatives for doing
this, it was decided to divide each predictor's value in a
given program by the number of Source Instructions for that

program.

As an end result of this normalizing procedure being
applied, (1) a net doubling occurred to the number of predic-
tor variables that could be considered in any one prediction
equation for each sample, and (2) a new dependent variable
(errors/source instructions) was added to each program-observa-
tion which is referred to as the error rate per program.

Error Rate and Length of Program1 - Once the normalization
procedure had been carried out and the correlations among all
variables were once again obtained, it was observed with interest
that the correlation of error rate (i.e., the normalized errors
per program variable) with Source Instructions was negative,
and low to moderate in magnitude, over most of the samples to
be analyzed. Interpreting the correlations directly meant
that as the number of source instructions in a program increases,
the errors per 100 lines of code decreases, and vice-vensa.
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In essence, for the programs in the two samples this suggested

that the shorter programs have higher error rates than the
longer programs. Nevertheless, when the relationship between

error rate and source instructions was actually graphed for

projects M, B, and P of sample S, as presented in Figure 3-1,
the reason for the low negative correlations became more

apparent.

These graphs show that, for each of the three projects,

as number of source instructions increases the error-rate

increases, reaching a maximum error-rate in the range of

200-400 source instructions. From that point on, the error-
rate decreases as number of source instructions increases.
SThis phenomenon requires some explanation.

It is well-known that as the number of source instructions
increases, the number of possible paths through the program

usually increases and that this increase is at a more rapid

rate than a linear one (perhaps not exponential, but more than
linear). To detect the same percentage of total errors in

two programs, the testing effort should exercise approximately

the same percentage of total paths. Therefore, the amount of

testing to detect equal percentages of total errors should

increase at a rate faster than linearly. It is hypothesized

that such was not the case for these projects, and that the

negative correlation between length of program and error rate

is due to lack of thoroughness of testi.ng. That is, the shorter

programs were more thoroughly tested than the longer ones, in

terms of having a higher percentage of their paths executed.
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It is of dourse possible that other explanations (or

hypotheses) would be better, such as, for these projects (includ-

ing both samples) the shorter programs were in fact more com-

plex, or that longer programs contain in general more repeti-
tive operations (thus more easily programmed), but it is

proposed here, as a result of evaluating the total analysis

effort, that the hypothesis of inadequate testing of the

longer programs is more likely to represent the actual situation.

Programs With Zero Reported Errors - Throughout most of the

sets of program samples that were to be analyzed, zero reported

errors were observed in long as well as short programs. Statis-

tics on these zero reported errors programs were reported
earlier in Table 2-4 for the projects of sample S and in
Table 2-6 for the subsystems of sample T. For the longer pro-

grams having zero reported errors, some skepticism is warranted.
It could have been that programming errors went unreported

for these programs, or that the programs received very little

testing. For the shorter programs with zero errors, it was

considered that they could actually be error free as reported.
However, given the earlier observed relationship between error
rate and source instructions as indicated by Figure 3-1 and

the correlations that were obtained, it is suggestud that at

least some of these programs underwent minimal testing.

It is believed then, that programs reported as error free

constitute a set of programs, some of which are actually error

free and some of which contain an unknown number of errors.
Further, those reportedly error free programs are more likely

to have more latent errors than those programs with some num-
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ber of errors reported. (The same reasoning might also be

applied to those programs with only onc or two reported

errors; however, the line must be drawn somewhere).

Throughout the analysis for both errors and error rate,

results were obtained (1) leaving the zero error programs in
the analysis, and also (2) excluding these programs. Per-

forming the analysis in two ways, it was possible to determine

whether an increase in the predictability of errors would

result by eliminating one source of ambiguity in the data.

At best, performing analysis in this way would be able to do

justice to any researchers who would contend that if error

prediction equations being developed are to be effective at

predicting errors, then all programs used to develop these

equations should have errors reported in them.
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4.0 ANALYSIS METHOD AND PROCEDURE

4.1 Multiple Linear Regression Analysis

The method of analysis used in this study to predict
programming errors was that of multiple linear regression.
Using the model,

Yi - a + bX1 ji + b2X21 + ... + bnXjni (4.0)

the observed programming errors (Y ) were assumed to be
predictable from a linear combination of the program charac-
teric predictor variables (X , X2 , ... Xn). In (4.0),
b1 , b 2, ... bn are the regression coefficients; i.e., the
estimated weights for each of the predictors that will maxi-
mize the predictability of errors, a is the intercept constant,

Sa - - (bl~li + b 2i + (. 1 b)

i.e., the estimated value of Yi at the point where the regres-
sion hyper-plane crosses the Y axis, and Y1 represents the
predicted or estimated value of errors for each individual
program module (i). The quantities 7 and Xi are mean values
of the respective variables.

The method used to determine the parameters of the re-
gression equation is to minimize the sum of squared deviations
of actual errors from predicted errors; i.e., minimize

S U e 2 _ - (a+bXli I b + "'" + bXi 2 (4.2)

S - J(¥i y y,) 2  /(.3)
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In (4.3) the value of S is referred to as the sum of
squares of deviations of the estimated value (Y¥) of errors

from the observed value (Yi) of errors summed over all the

program modules in each sample or set of observations for
which errors are predicted.

Generally when prediction equations such as represented
in (4.0) are being evaluated for their goodness of prediction,
two statistics, (1) the multiple correlation coefficient (R)

and (2) the squared multiple correlation coefficient (R2)1
are used. The value of R has a range from 0 to I as indicated

in (4.4),

0 R•y. 1 2 3 .n . n (4.4)

and can be interpreted as the actual correlation between the
linear combination of predictor variables and the observed

values of errors (Yi). The value of R also has a range from
0 to 1 and is a measure of the proportion or percentage of
variation in the dependent variable (Y that can be accounted

for or explained by the linear combination of predictors.
2More specifically R can be represented by the ratio,

R.1 2 3 ... n yI - * )/ Y " ?)2 (4.5)

where ? is the mean or average value of the dependent variable

'I in the given sample being analyzed.

r!
As more improved or better predictions are obtained, the

values of both R and R2 will approach a value of 1. Complete
lack of correlation (implying no predictability) results in an

R or R2 value of zero. Both statistics (R and R ) will be
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presented for all prediction equations in this study. For the

purposes of this report, the goodness of prediction or what

could be termed the predictability of programming errors will
be discussed only in terms of R2 .

Predictability will be described in terms of being low,

moderate, or high in later sections of this report. These
categories are based on the authors' judgement and are used

for the descriptive purpose of comparing and contrasting the

results of numerous error prodictions obtained in this study.

For those readers interested in a more thorough and

detailed discussion of regression analysis, texts by Draper

and Smith (1968) (3) and Kerlinger and Pedhazur (1973) (6)

are readable, cogently presented, and are highly recommended.

Although much more could be said here concerning multiple

regression theory, practice, and procedures, the following two

points deserve special emphasis.

Multicollinearity Amon2 Predictor Variables - In many

multiple regression procedures the computed values of a, b1,

b2, ... and bn are directly obtained from matrices which con-

tain the intercorrelations among the predictor variables and

the correlations of the predictor variables with errors. If

the predictor variables are truly mathematically independent

(i.e., not correlated with each other), then the problem of

interpreting the final multiple regression equation becomes

simple and the interpretation is straightforward. However,

when the predictor variables are moderate to highly correlated

with each other (which is usually the case), then a clear and

explicit interpretation of the prediction equation becomes

4-3

............................................ .... . .'. .; ..



comparatively much more difficult. When this situation

arises, then the problem of multicollinearity is said to exist

(Althauser, 1971 1 Gordon, 1968: Rama Sastry, 1970) (1, 5, 15).
As indicated in Sections 2.0 and 3.0, many of the variables

in both of our samples were moderately to highly correlated.
Necessarily then in the 'Results' section of this report

(Section 6.0), our interpretation of the prediction equations

will consider interdependent variables.

Number of Predictor Variables and Sample Size - When the
number of predictor variables available to study equals or
exceeds the number of program-observations in the data sample,
then perfect prediction of the criterion error measure (errors

or error rate) will always result. Clearly for both data
samples, there is a danger of encountering this problem. What

was needed then to deal with this problem was to apply some
analytical or automated statistical procedure to select the

most powerful set of predictors for errors and error rate in

each of the data samples. Two procedures were used. The first
procedure involved the a priori elimination of predictor vari-
ables based on selected operational and statistical criterion.
The criteria and the variables eliminated using these criteria

are discussed in Section 5.0. The second procedure involved
the use of a stepwise regression procedure that would enter,
remove, swap, or delete variables from the regression equation
based totally upon statistical criterion. This procedure will

be discussed in the following section.
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4.2 BMDP Stepwise Regression Procedure

The stepwise regression procedure selected to be used in
this study was the procedures referred to as BMDP2R, made

available along with other statistical programs in the Bio-

medical Computer Program Package (B.DP) developed and distri-
buted by the Health Sciences Computing Facility (HSCF) at the
University of California, Los Angeles (UCLA), The HSCF
supports Biomedical computer analysis for the School of
Medicine at UCLA and is sponsored by a NIH Special Research
Resources Grant RR-3. Although the BMDP series of programs

has only been recently released (1975), it is based on an
entire series of programs that have had a history of program

revisioning, maintenance, modification, and testing that goes
back to 1961. The BmD program series is one of the most
widely used and highly reliable sets of statistical programs
that has yet been developed for general purpose applications.

Essentially, the BMIDP2R procedure estimates the parameters
(a, bI, b2 , ... bn) of multiple linear regression equations
in a stepwise manner. Four stepping algorithms are available.
The algorithm selected for the current analysis is referred

to as an FSWAP procedure, which enters and removeq predictor

variables based on an F-to-enter and a F-to-remove criterion
with a variable interchange option. Without becoming too
detailed here, the FSWAP procedure works as follows. Initially,

the procedure selects the variable having the highest correla-
tion with the dependent variable. It then adds the variable
which has the next highest partial correlation with Y. After
this addition, it continues adding variables which increase
the multiple correlation coefficient (R), and concurrently
swapping or exchanging variables not yet in the equation which
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increase the multiple R value. Finally after no additional

variables will increase the value of R, it then proceeds to

perform a backwards elimination, removing those variables

which have the least effect on the goodness of prediction.

For additional information on this program, the reader should

consult the actual BIDP publication manual (Dixon, 1975)

(2). (All computer runs using the BMDP2R program were per-

formed on an IBM 370/168 computer.)

4-6

e

1C



5.0 DEVELOPMENT OF ERROR PREDICTION EQUATIONS

The purpose of this section is to discuss various opera-
tional and analytical considerations and decisions that were
made which pertain to the development of the error prediction
equations that were obtained for this study.

5.1 Normalization of Predictor Variables

For both data samples, various transformations of selected
variables were required. For example, for each program in
both sample S and sample T, in order to normalize the original

predictor variable values, each value was multiplied by a
constant of 100 and divided by the total number of source
instructions for that particular program (i.e., either Xl
for sample S programs or TS for sample T programs). This
normalization procedure thus resulted in a completely new
set of predictor variables, in addition to the original set

of predictors, in which each normalized variable could be
interpreted as a unique measure of the original predictor
variable given that the effect of the length of the program
had been removed from it. In effect this procedure made each
of the original variables comparable with respect to a "per 100

lines of source code" interpretation.

It is interesting to note that this particular normali-

zation procedure did not completely eliminate the linear
effect of total source instructions from all of the original

variables. For most of the normalized variables, the corre-
lation coefficients with Total Source Instructions were nega-

tive but relatively low or close to zero in magnitude. A few

of the normalized variables had non-zero correlations with Total
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Source Instructions which ranged from -. 50 to +.40 in
sample S and from -. 69 to +.72 in sample T. Clearly then,
this normalization procedure is not the most effective means
for eliminating the effect of Source Instructions from each of
the predictor variables. In actuality, the most statistically
consistent and accurate procedure for eliminating the linear
effect of one variable from one. or a set of other variables
is through partial correlation.

In the case of this analysis effort, use of the partial
correlation procedure could have been alternatively employed
by first predicting each original variable individually as a
function of Total Source instructions, and then using only the
residual values (i.e., Yi-YI) as the values for the normalized
variables that were employed in the prediction equations. If
this procedure had been utilized, the resulting matrix of
intercorrelations among all the normalized variables would in

fact be a matrix of partial correlationsi that is, the corre-
lation between the various pairs of predictor variables with
t1s linear effect of Total Source Instructions eliminated from

both variables. The matrix of intercorrelations between each
of the normalized variables and the original varipbles including
the dependent variable, errors, would actually be a matrix of
semi-partial correlations: i.e., the correlations between each

of the normalized variables and the original variables including

the dependent variable with the linear effect of Total Source
Instructions eliminated from only the normalized variables.

Clearly, one implication of using this alternate procedure

is that for the normalized variables, an entirely new data base

must be constructed wherein each residual value must first be

obtained from a simple linear regression procedure, automated,

5-2

!I



and then entered in the data base. To be sure, constructing

normalized variables using this procedure would indeed be

time consuming and would require the availability of special-

purpose software support programs that could minimize the amount

of manual processing that would be required. Due to time

constraints, this procedure was not followed.

5.2 Other Transformations to Predictor Variables

In addition to the normalization that was applied to the

predictor variables for both samples, the only other transfor-

mations that were used were applied against several predictors

of sample T. Since all data from sample T had been obtained

in manual form for this study, all data values had to be

recorded, keypunched, verified, and then automated. Most pre-

dictor variables of sample T were whole numbers, whereas the

Loop Complexity (LL), If Complexity (IF), Programmer Rating

(RAT), and Programmer Workload (WELD) variables were whole

numbers with one decimal value. In addition, Comments (COM)

and Programmer Rating were originally represented as negative

values. In order to simplify and expedite the manual to auto-

mated process for this data, the values of LL, IF, RAT, and WELD

were multiplied by a value of 10 in order to represent them as

whole numbers. The values of COM and RAT were multiplied by
-1 and -10, respectively, in order to eliminate the negative

sign from both variables and represent the RAT predictor

values as whole numbers.

Additionally, using the RAT and WKLD variables of sample T,

a new predictor variable was constructed which took the form of

RAT/WKLD. It was hypothesized that this new variable was

linearly related to errors and as such should be included as
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a candidate variable for consideration by the stepwise

regression procedure. This newly constructed value was multi-
plied by a constant of 100 in order to represent it as a whole

number throughout its range of values.
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5.3 Combining Predictors In The Equations

As a direct result of the normalization procedure, 107
distinct variables versus the original 54 variables of sample S
were considered as predictors of errors and error rate. For

sample T a total of 10 as opposed to the original 16 variables
were candidate predictors. Although the BMDP2R program is
a stepwise procedure that selects the optimal predictors from

among all those available to be entered, it is desirable to

limit the number of predictors it would have to consider for
any given set of predictions. This was desired in order to
maximize the chance that as many predictors as possible could
be considered in the regression equation simultaneously, and

then eliminated one at a time using the backwards elimination

procedure if the variable actually had no significant effect
or, the predictability of the dependent variable. In addition,
the predictors available for selection by the regression pro-

cedure are limited because the total number of predictors
should not exceed the sample size. In addition, reducing the
number of predictors reduces the computer time required to

generate each set of predictions.

For the sample T subsystems, allowing all 30 or less vari-
ables to be available for selection in the equation presented

no major dif: r.Due t'hu i priori elimrniaticrn of pre-

dictors that was carried out for sample T (to be discussed in
Section 5.6), no more than 23 variables were ever allowed to

be considered fcr selection. Essentially then for each sub-
system of sample T, errors and error rate were predicted using

the combination of variables as follows:
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Errors/program - f(Program Structure + Programmer Variables)

Errors/program - f(Program Structure Variables only)

Error rate/program = f(Program Structure + Programmer
Variables)

Error rate/program - f(Program Structure Variables only)

The program structure variables for these predictions represen-
ted the combination of both the unnormalized (TS, LL, IF, BR,
... , COM) and normalized (LL/TS, IF/TS, BR/TS,..., COM/TS)
predictor variables. Additionally, prediction equations were
obtained first using the program observations available in
each subsystem and then second, using only the remaining
program-observations left after the zero reported error programs
had been deleted from the analysis.

For the three projects of sample S, the 107 predictors were
analyzed in two different sets each, for errors and error rate.
These sets of predictors were combined as follows:

Errors/program - f (Unnormalized Variables)
Errors/program - f (SI + Normalized Variables)

Error rate/program - f(Unnormalized Variables)
Error rate/program = f(SI + Normalized Variables)

In these predictions SI represents the Source Instructions (SI)
variable X1; the unnormalized variables are the predictors
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Xl, X2, ... , X54; and the normalized variables are the

predictors X56, X57, ... , X107. Here, as with sample T,

prediction equations were obtained both using all observations
and using only the observations remaining after the zero

reported error programs were deleted.

In any of these equations, due to the a priori variable
elimination procedure that was applied, no more than 45 pre-
dictors per regression run were ever available to be selected
for the sample S prediction equations.
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5.4 Selection of Regression Coefficients to be Reported

After having made the necessary transformations (i.e.,
normalization and other transformations required) to the data
and identifying how the predictors were to be combined in the
analysis, one other issue remained. In essence, there were
sets of predictors in both samples that would be equally or
unequally weighted and non-comparable in a regression analysis.
This follows from the facts that 1) the normalized variables
had different units of measurement as compared with the unnorm-
alized variables, and 2) for the predictors used in sample

T, the program structure and programmer variables were not
comparable, being derived from two distinct measurement domains.
Thus, using predictors that had unequal or non-comparable units
of measurement would result in making more difficult any rela-
tive comparisons among the raw regression coefficients computed
for the predictors in the equation. In order to resolve this
problem, it was decided that the standardized partial regression
coefficients (Kerlinger and Pedhazur, 1973, p. 64) (8) would be
reported for all predictions.
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5.5 Regression Analysis Using Standardized Form of the
Prediction Egiation

In practice the standardized partial regression coefficients
are referred to as B (beta) coefficients or beta weights as

compared to the b coefficients as represented in equation (4.0).
The beta weights are the regression coefficients that result
when the raw data is transformed (i.e., standardized in this

case) into standard score form prior to the analysis. For
example, the standard score for the ith observation on a

variable (Xi) is computed as follows:

z Xi " (5.0)

si

where and si are the mean and standard deviation, respec-

tively, for that variable. When all the predictor and depen-
dent variables are standardized according to this procedure,

the standardized variables all have a mean of 0 (i.e., i - 0)

and a standard deviation of 1 (i.e., sz - 1). Essentially

then, the variability in each variable is made comparable
with r'espect, to tho ,tu4nd,:u. 1 d.viatloui a.,; thhe cofaigol unit

of measurement over all variables; thus, the B coefficients

in the standard score form of the regression equation are

also comparable. Although the raw data had not been stand-
ardized, the BM4DP2R regression procedure computes the beta

coefficients (in addition to the raw b coefficients).

Since the standard score form of the regression equation

was being reported in this analysis, the linear regression

model and other statistical formula became more easily interpre-

ted in terms of the beta coefficients. For example, the
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linear model now took the form,

Z B Z +BZ + BZ + + BnZni5
yi 1 li 2 2i 3i . n ni.

and the multiple R, R2 , and standard error of estimate
could be computed as follows:

Ry.1 2 3...n 4,/B 1 ryl + B2 ry 2 + B3r y3 + ... + Bnry (5.2)

2
Ry. n- BlryI + B2 ry 2 + B3 ry 3 + ... + Bnrn (5.3)y123 n I yl 2y3

S•a (5 4

y 0/.yý123ý...n

w,3re the ri values are the correlations of each predictor (i)

with the dependent variable (y).

Furthermore, since the results of any correlational

analysis are the same whether the analysis started with the
raw data values or the standard score values, computational

foLrmula are available (Kerlinger and Pedhazur, 1973, pp. 61-62)

(8) which easily allow the computation of the value of the b

coefficients and the a intercept in equation (4.0) using the

beta coefficients obtained in this analysis. For e::ample,

the raw regression coefficients b and the a intercept can be
directly computed using the following formula:

b -B (5.5)
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and a a B ;- B o) () - (7n) - *, a )a 1 (%4) n (R) (5.6)

Yj

where ay and sj are the standard deviations of the dependent

(Y) and predictor variables (J), respectively, and Y and Xý are
the means for the dependent and predictor variables, respec-

tively.
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5.6 A Priori Elimination of Predictor Variables

Certain predictor variables in both data samples were
eliminated from any further consideration in the prediction
analysis, prior to their actual consideration for selection
by the BMDP2R regression procedure. In general, most of the
predictors that were eliminated at this early stage of analysis
were done so in order to reduce the incidence of multi-
collinearity that exists among the predictors. Other variables
were eliminated primarily because they had zero values through-
out the data sample. Table C-1 in Appendix C lists all the
107 predictors of errors and error rate in sample S and identi-
fies each of the variables that were either eliminated a priori
from the analysis, or made available to be considered for
selection in the regression procedure. The criteria used to
eliminate these variables prior to the regression analysis are
enumerated at the end of this table. For the 30 predictors
of sample T, Tables C-2 and C-3 in Appendix C provide similar
information for the predictors of errors/program and error
rate/program, respectively.
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6.0 ERROR PREDICTION EQUATIONS: RESULTS AND DISCUSSION

The purpose of this section is to present and discuss

the actual prediction equation results that were obtained

when predicting errors/program and error rate/progre, rm-

spectively, for each of the three projects of sample S

and each of the eight subsystems of sample T. Preliminary

to this presentation of results for each sample, an overall

general summary of results with discussion is provided.

.1. Results Summary

The following are the major results obtained regarding

the predictability of errors and error rate over both of
the samples that were analyzed.

Errors/Program

"• For sample T, where the error data had been collected

throughout the validation, acceptance, integration,

and operational testing phases of software system

development, errors/program were found to be moderately
to highly predictable. This predictability was far

from perfect with 76% to 93% of the variance accounted

for when the errors/program were predicted from a

linear combination of program structure variables.

"e For sample S, where the error data had been collected

only during the test and integration phase of software

system development, errors/program were found to be

less consistently predictable. The percent of variance

accounted for in this sample was 59% to 90%.

6-1
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0 Predictor variables which reflected length of program

were generally found to be the best single predictors
of errors/program. However, other program structure-

complexity variables together in combination with

length of program variables contributed significantly
to the predictability of errors/program.

Error Rate/Program

@ For sample T, error rate/program was found to be less

predictable in general than errors/program, with 59% to

85% of the variance accounted for, when predicted from

a linear combination of program structure variables.

0 For sample S, the predictability of error rate/program

was generally, lower, with 34% to 94% of the variance

accounted for.

0 Predictor variables which were measures of the number
of program interfaces per 100 lines of source code
were generally found to be the best single predictozs

of error rate/program. However, other normalized
measures of program complexity together in combination
with program interfaces per 100 lines of source code,

contributed significantly to the predictability of

error rate/program.

6-2
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0 In general, the predictor variables %hich were most

frequently selected by the stepwise regression pro-
cedure as contributing significantly to the predicta-
bility of error rate/program were the normalized

variables.

* Analysis of the error rate/program measure for those
data samples having a high percentage of error-free
programs leads to a clear indication of the lack of
thoroughness of testing in these reportedly error

free programs.

6.2 Discussion

Clearly, the results obtained from the analysis of errors
and error rate are not surprising. The facts that (1) length of

program and the number of program interfaces per 100 lines of
source code were found to be the best single predictors for
errors and error rate, respectively, and that (2) program com-
plexity variables contributed significantly to the predictability
of each dependent variable, are findings that not only appeal to
experience and intuitive judgement about how these predictor
variables may be related to measures of programminV errors,
but also are findings which are supported by other empirical
studies concerned with software reliability (Mitchell et al.,
1976; Thayer et al., 1976, Okimoto, 1975)(11, 13, 14).

For example, con3ider the following hypotheses, which
logically follow from our knowledge and experience of program-
ming, which concern the effect uf increasing program length
and program complexity on the total number of programming errors

in the program.
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Hypothesis 1: As length of program increases, program complexity

increases, and the number of latent errors in

the program increases linearly as a function of

both.

Hypothesis 2: As length of program increases, program complexity

increases, and the number of probable or latent

errors in the program increases at an exponential
rate.

Hypothesis 3: As length of program increases, program complexity

increasesi redundancy in the use of similar

software functions and instructions in the

program also incruases, resulting in the number

of latent errors in the program increasing up
to a point with no significant increase there-
after with increasing program length.

Each of these three hypotheses are graphically depicted in
Figure 6-1.

Hypothesis 1, which in essence is the basic assumption of

the multiple linear regression model used in this arnalysis,

can generally be accepted as one explanation for the high degree

of predictability obtained when predicting errors/program in

this study. However, hypotheses 2 and 3 cannot be rejected

by this analysis. This is clear for several reasons:

(1) the model investigated by this analysis was a linear

model, and not an exponential or curvilinear model

as are suggested by hypotheses 2 and 3, respectively;
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(2) the linear model did not yield perfect predictability
of errors over each of the samples that were analyzedl
and

(3) the numerous program structure and complexity metrics
that were used as predictor variables in the study
would possibly require re-evaluation or re-formulation,
with the chance that some variables would be ex-
cluded and new ones included, in order to use them

to appropriately investigate hypotheses 2 and 3.

With respect to the finding that program complexity
measures and the number of program interfaces contributed
significantly to the predictability of error rate, studies by
Okimoto and Thayer (13, 14), are of interest. Okimoto found in
a survey of approximately 60 systems programmers that when they
were asked to rank order the ten most important factors con-
tributing to error-proneness in programs, poorly defined inter-
faces was ranked as the highest and most important factor.
Other factors of importance that were included in this list of
contributors to error-proneness were (I) poor/incomplete testing
(ranked 3rd), (2) complex function/logic (ranked 8th), and
(3) large modules (ranked 10th).

In the Thayer et al. study, among the many things that
were presented was a brief analysis of factors which contributed
to the difficulty of developing over 200 command and control
programs. Each program was rated according to five categories
of difficulty: difficulty to design, code, implement, checkout,
and document. These ratings were then summed to obtain the
overall difficulty rating for each program. Of particular
interest were the major reasons given for the difficult to
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develop programs: complex logic, core loading problems, and

data interfaces. A fourth reason, changes in interpretation

of poorly stated requirements, which adds to complexity and

difficulty in program development was also given.

6-7
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6.3 Sample S Results

6.3.1 Errors/Program = f(Unnormalized Variables)

The prediction equation results for both five and ten

predictor variables, when predicting errors/program from a

linear combination of the unnormalized variables for each

project of sample S, are presented in Tables 6-1 thru 6-5.

These tables report

(1) the standard partial regression coefficients

(i.e., the beta Loefficients, not the raw regression

coefficients) for each predictor,

(2) the correlation of each predictor with errors,

(3) the highest value of R and R2 obtained for the

maximum number of predictors entered in the

equation by the regression procedure, and

(4) the analysis of variance tables for both five

and ten predictor regression equations.

Prediction equation results for projects 11 and B where zero

errors were deleted from the analysis are reported in

Tables 6-2 and 6-4, respectively. Additionally, Tabl-s 6-6

and 6-7 are included here to summarize the prediction results

obtained for both five and ten predictors over all regression

equations that were developed using the unnormalized variables

as predictors of errors. For projects M, B, and P, a total of

45, 43, and 45 predictor vu',LbIL;, r,-SQ2cLiVly, wen2 avaljleIC,

6-3
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TABLE 6-1. PROJECT M,
ERRORS/PROGRAM = f(UNNORMALIZED VARIABLES)

VARIABLES IN PREDICTION EQUATION

1 g1 25C(MAX.).

MULTIPLE R .717 .768 .7il
MULTIPLE R2 .514 .589 .636
STD. ERROR OF ESTIMATE 7.449 6.892 6.G21

VARIABLES CX) COEFFICIENTS rXy

Xl SOURCE INSTRUCTIONS --- -1.280 .563
X2 ENTRY POINTS .175 - .146 .150

X4 USING INSTRUCTIONS .191 .290 .567
X9 CALLS/LINKS --- .105 .374
X12 EQUATE STATEMENTS ,181 - .237 .362
X14 LOGICAL CONNECTORS --- - .131 .268
X15 CONDITIONAL JUMPS --- .603 593
X16 FUNCTIONS .--- 182 .515
X20 LOCK MACROS .106 --- .309
X37 UNDEFINED VARIABLES .734 .712 .64531
<54 S1 X AVG. NO. OPERATORS/ --- .601 .590

ARITHMETIC INSTR.

ANALYSIS OF VARIANCE

NO. SUM OF MEAN
PREDICTORS SQUARES DF SQUARE F p

5 REGRESSION 22794.547 5 4558.906 82.151 c.001
RESIDUAL 21585.199 3RQ 55.489

10 REGRESSION 26140.555 101 2614,055 55,035 <.0 1
RESIDUAL 18.39.102 384 47.497

TOTAL 44379.669 394

• BEST SINGLE PREDICTOR
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TABLE 6-2. PROJECT M,
ERRORS/PROGRAM f f(UNNORMALIZED VARIABLES),
ZERO ERRORS DELETED

VARIABLES IN PREDICTION EQUATION

SA 24(MAX.).

MULTIPLE R .695 .755 .791
MULTIPLE R .483 .571 .625
STD. ERROR OF ESTIMATE 8.215 7.552 7.228

VARIABLES (x) COEFFICIENTS r

XI SOURCE INSTRUCTIONS --- .929 .534
X2 ENTRY POINTS 192 .148 .115
X4 USING INSTRUCTIONS .174 .283 .456
X12 EQUATE STATEMENTS - .183 - .227 .355
X13 COMMENTED INSTRUCTIONS --- .139 .353
X15 CONDITIONAL JUMPS --- .659 .584
X16 FUNCTIONS --- .238 .465
X20 LOCK MACROS .104 --- .290
X37 UNDEFINED VARIABLES .738 .647 .6241c
X42 NON-NESTED 03 LOOPS --- .158 .452

X53 INSTR., 6TH LEVEL OR LOWER, --- .102 .147
DO LOOPS

ANALYSIS OF VARIANCE

NO. sUM OF MEAN
PREDICTORS SQUARES UF SQUARE F

5 REGRESSION 18866.531 5 3773.306 55.919 4.001
RESIDUAL 20175.902 299 67.478

10 REGRESSION 22274.613 10 2227.461 39.055 (.001
RESIDUAL 16767.816 294 57.,A33

TOTAL 39042.434 304

:tBEST SINGLE PREDICTOR
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TABLE 6-3. PROJECT B,
ERRORS/PROGRAM .(UNNORMALIZED VARIABLES)

VARIABLES IN PREDICTION EQUATION

j ~ 19(MAX.)

MULTIPLE R2 .812 .853 .886
MULTIPLE R .660 .727 .785
STD. ERROR OF ESTIMATE 3.615 3.322 3.110

VARIABLES (x) COEFFICIENTS xy

X4 USING INSTRUCTIONS --- .245 .436
X3 UNCONDITIONAL JUMPS --- .172 .294
X15 CONDITIONAL JUMPS - .4143 - .557 .582
Xl7 SCALING/ROUNDING OPNS. .211 .219 .589
X22 ADDRESS VARIABLES --- .209 .319
X28 FIXED POINT VARIABLES FREQ. --- .197 .498
X35 REGISTER VARIABLES --- . 294 .,4ig
X37 UNDEFINED VARIABLES .631 ,58 F)78t
X49 INSTR., 2ND LEVEL DO LOOPS .305 .313 .668
X53 INSTR., 6TH LEVEL OR LOWER .286 ,2 Y .565

DO LOOPS

ANALYSIS OF VARIANCE

NO. SUM OF MEAN
PREDICTORS , SQUARES DF SQUARE F p

3 REGRESSIOti 24.63.154 5 4 9 6.63 1 . 0 11, <.JJ,
RESIDUAL 1280.795 98 13..16)

li1 REGRESSION 2737.,61,! 1; 273..761 24.8ý6 <. ,10 i
RESIDUAL 1027.3!-) 3 1 . '3[1

TOTAL 3763.949 1,3

BEST SINGLE PREDICTOR
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TABLE 6-4. PROJECT B,

ERRORS/PROGRAM f(UNNORMALIZED VARIABLES),
ZERO ERRORS DELETED

VARIABLES IN PREDICTION EQUATION

MULTIPLE R .834 .893 .919
SMULTIPLE R

2  595 .797 .845
STD. ERROR OF ESTIMATE 3.413 2.869 2.572

VARIABLES (X) COEFFICIENTS r Xy

X4 USING INSTRUCTIOhS --- .g290 .658
X6 LABELED INSTRUCTIONS --- .275 ,447
XtI USER MACROS --- .31 .4011
X15 CONDITIONAL JUMPS - .493 - .335 .578
XIS SHORT 00 LOOPS --- .194 .;12
(X27 FIXED POINT VARIABLES .154 .286 .333
X37 UNDEFINED VARIABLES .695 .700i .635
X49 INSTR., 2ND LEVEL 00 LOOPS .35J .482 .688:
1X53 INSTR., 6TH LEVEL OR LOWER .359 .474 .590

DO LOOPS
;X54 SI X AVG. NO. OPERATORS/ --- -1.056 .604

ARITHMETIC INSTR.

ANALYSIS OF VARIANCE

NO. SUM OF MEAN
PREDICTORS SQUARES L)F SQUARE F

5 REGRESSION 237.•.39 5 474.,349 I.(n 1 2 
.j).602

RESIDUAL W1ý9.876 89 11.683

1$i REGRESSION 272J.190 111 172.019 33.151 . 4< I1
RESIDUAL 6131.336 84 8.2301

TOTAL ;,11.526 94

13 EEST SINGLE PREDICTOR
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TABLE 6-5. PRO JECT P, .f
ERRORS/PROGRAM = f(UNNORMALIZED VARJ.ASLES)

VARIABLES IN PREDICTLON EQUATION

ia• 17(MAX.)

MULTIPLE R .. 2R8 .946 .988
MULTIPLE 2  

.789' .895 .977STD. ERROR OF ESTIMATE 2.613 2.022 1.130

VARIABLES (X) COEFFICIENTS r y

X4 USING INSTRUCTIONS --- .465 .352
X5 COMMENT STATEMENTS .317 .762 .5019
X8 UNCONDITIONAL JUMPS .748 544 ,66411

X17 SCALING/ROUNDINC OPNS, -- - .176 - A.2J4.
X23 ADDRESS VARIABLE FREQ, - .37 - .386 .)68
X28 FIXED POINT VARIABLE FREQ. .324 .601 .242
X37 UNDEFINED VARIABLES --- .1,36 .567
X42 NON-NESTED DO LOOPS ..- .386 .179
X47 DO LOOPS, 6TH LEVEL OR LOWER .336 --- .345
X51 INSTR,, 4TH LEVFL DO LOOPS . , 4374 2
X53 INSTR., 6TH LEVEL OR LOWER --- .6,12 .341

DO LOOPS

ANALYSIS OF VARIANCE

NO. SUM OF MEAN

PREDICTORS SQUARES VF SQUARE F

5 REGRESSION 737.633 5 147.527 21,612 4.Jll
RESIDUAL 197.962 2' 6.826

hi REGRESSION 337.431 1., 3.743 2 474 <.,!.I I1
RESIDUAL 98.165 24 . .0ý)o

TOTAL 935.59b•

BEST SINGLE PREDICTOR
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TABLE 6-7. TEN PREDICTOR SUMMARY,
ERR(.RS/PROGRAM f=(UNIORMALIZED VAPIABLES)

VARIAGLES 86 b

REGRESSION COEFFICIENTS

X4 USING INSTRUCTIONS .2911 .283 .245 .291 - .465
X37 UNDEFINED VARIABLES .7121t .64 7 1t .5881t .790 .436
X15 CONDITIONAL UUMPS .603 .659 .557 - .335
X53 INSTR., 6TH LEVCL DO LOOPS .10(2 .2i11 ,L., .GJ2
XI SOURCE INSTRUCTIONS -1.28J - .929
X2 ENTRY POINTS - (,r), - 14B
X3 UNCONDITIONAL JUMPS .172 .5441c
X12 EQUATE STATEMENTS - .237 - .227
X17 SCALING/ROUNDINI OPNS. .21) - .176
X23 FIXED PT, VAR. FRE(ý, .197
X42 NON-JESTED DO LOOPS , 15 - .336
X49 INSTR., 2ND LEVEL DO LOOPS .313 ..4741
X54 St X AVG. NO, OPERATORS/ .t,.1 -1.0 56i

ARITHMETIC INSTR.

CORRELATION STATISTICS

rSi 5ERRORS 5653 .534 .6140 .65, .593

ric S1  .88:1 ,812 .353 ) 727 ,J37

rfl ERRORS .645 .624 .6783 .. (S ,66+4
r2 ",ERRORS ,1416 .389 ,.146,1 .473 .441

PREDICTIOtl SUt'ffRY

R, .5:: .571 .7"7 .395

GALL UBSERVATIONS USED

b'ERO ERRORS DELETED

== ,IN(LF PQ•nIr7T6P



to be automatically entered in the prediction equation (see

Table C-I, Appendix C).

Initial observation of these results, particularly the
2R values as reported in Tables 6-6 and 6-7, indicates that

(1) for all sample S projects the increase in R2 i.e., the

percent of variance accounted for when predicting errors,

shows a moderate increase when ten predictors are used as

opposed to when only five are used; and (2) the predictability

of errors ranges from moderate for project M (R - .589) to

high for project P (R - .895). One can also observe (see
Tables 6-1 thru 6-5) that the variables selected for the five

predictor solution are predictors which generally appear again

in the ten predictor solution, after five different predictors
have been entered.

Clearly the predictability of errors in sample S is not

consistently high over each project. Two predictors however,

Using Instructions and Undefined Variables, do appear con-

sistently in each of the ten predictor equations Lor each

project. Other variables as indicated in Table 6-7 do appear

less consistently either for two or more of the prediction

equations that were developed, or for at least two of the pro-

jects of sample S. The fact that variables may appear con-

sistently over two or more projects, however, does not necessarily

mean that they are the most important variables from a prediction

viewpoint.

The best single predictor of errors in each project is

evaluated by its correlation with errors and not its beta

coefficient in the regression equations. For projects M and

B, Undefined Variables was the best single predictor of errors.

6-16
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For project P the beat single predictor was the number of

Unconditional Jumps in the program. However, in Table 6-7

when one examines the percent of variance in errors explained

by the best single predictor (designated as errors)

versus the percent of variance explained by the best single
predictor plus other program complexity variables (i.e.,

R2), it is observed that the other program complexity variables

selected by the regression procedure are significantly con-

tributing to the predictability of errors over and above that

which can be predicted only by the best single predictor in

any of the projects.

One additional point is important enough to mention

here. In Table 6-7 the correlation statistics are reported

for the correlations between the best single predictors and
Source Instructions (SI). In general, all of these correla-

tion coefficients are moderate to high with the exception of

the correlation of project P's best single predictor, Uncon-

ditional Jumps, with SI. This clearly shows that each best

single predictor is itself reflecting length of program plus

some contribution to the prediction of errors which is unique to

the variable itself. In essence then, given that these best
single predictors had not been used, source instructions by

itself could be used to predict errors almost as well as each

best single predictor.

With respect to error predictability, whei zero errors

are left in or taken out of the data samples (see Tables 6-1

thru 6-4) , predictability of errors increases appreciably

(from .73 to .80) for project B, but no change of any

statistical significance (a decrease from .59 to .57)

occurs for project M. Although only nine zero error observations
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were deleted from project B's data sample, this deletion was

sufficient to cause changes in the correlations among pre-

dictors and between each of the predictors and errors, such
that an almost completely different prediction equation was
produced, wherein only three of the ten original predictors
were reselected. For project M, 90 zero error observations
were deleted and seven out of ten original predictors in the
regression equation using all observations (i.e., 395) stayed
in the equation; however, with slightly different coeffients.

Several explanations for these results can be suggested
at this time. First, as earlier hypothesized in Section 3.0,
programs with zero reported errors are programs that have not

K been thoroughly tested and contain latent erro-s. Zero reported
errors in these cases are actually under-estimates of the
total errors in the program, and if these programs are used
along with programs that have errors reported in them for error
prediction purposes, then estimates of error predictability;
i.e., values of R , will be biased downward. This is in fact
what was observed for project B.

On the other hand, for project M, since the change in R2

was so slight (i.e., - .02) and since seven of the ten original
predictors remained in the e-quation, this suggests the possi-
bility that the 90 zero errcr programs that were deleted might
have been the shorter programs which had only a limited amount
of variability in their predictor variables. In other words,
predictor variables witich may have limited variability to con-
tribute to the prediction of errors, when eliminated from the
analysis, do not significantly change or affect the results.
However, a validation of this suggested hypothesis for the 90

6-18
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error free programs of project M can only be attempted by

a complete analysis of these programs, which was not the

intent or purpose of this study.

Interpreting the regression equations presented in

Tables 6-1 to 6-5 presents some difficulty. There are several

reasons for this. One basic reason is that beyond the descrip-

tion of each variable that is provided in Table B-I, there is

no more definitive understanding of what each variable is

measuring, not to mentiun how combiritions of these variables

should conceptually interact to influence errors in programs.
One predictor variable that would stand as an exception for

which an interpretation could be given in this case is

X5, Comment Statements. Comment Statements appears in Table 6-5
as a predictor with positive coefficient for both the five and

ten predictor regression equations for project P. One would

initially expect that since comment statenments are not execut-

able, they cannot contribute to errors in programs. There
is no disagreement with this explanation. However, one

possible explanation for this variable appearinq in the equa-

t~ions for project P could be that these programs may have had

a comparatively larger number of comment statements in them

relative to programs of project M and B. As such, this in-

creased the readability of the programs, which resulted in

more errors being found because they wc-e more easily detected.

An additional reason why no straighL-forward interpretation

of the regression equations can be attempted is that each of

the predictors that were selected were usually found to be

correlated with other variables in the equation. This was

particularly evident for the results presented in Table 6-1

for project M. For example, one might ask the reason for the
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negative beta coefficients for variable X1, Source Instruc-

tions, when it is reported as being positively correlated with

errors. Statistically, there is an explanation for the large

negative weight being computed for Source Instructions. Other

predictors, particularly those that had entered the equation

prior to Source Instructions, were moderately to highly corre-

lated with Source Instructions. The correlation coefficients

of each of the predictors with Source Instructions is reported

below:

X2 X4 X9 X12 X14 X15 X16 X37 X54

.352 .535 .627 .633 .425 .910 .646 .880 .976

After the first variable had entered the equation (i.e.,

variable X37, the best single predictor of errors), the partial

correlation of Source Instructions with errors was very close to

zero. As such, when Source Instructions entered the equation

which was at step 7 in the regression procedure, it contributed

to the predictability of errors (i.e., R2) by suppressing the

effect of Source Instructions from other variables that had

already been entered in the equation. This then is the rea-

son for the large negative weight being computed for Source

Instructions. By suppressing or taking out this effect, the

I ted!:Ltiv , 'i,0 ([ Ih c fther, \'1 ,i ],•f : I C 'i (, , I w

evidenced by positive changes in these predictor's coefficients.

In essence then variable Xl is functioning as a suppressor

variable in the equation of Table 6-1. Suppressor variables

are quite common in the social sciences and in other areas of

study wherein measurement tools are either unavailable or have

not been developed for providing unique and indepondont

measures of predictor variables for data collection and analysis

purposes. (Suppressor variables generally appeared throuyhout

the results for both samples S and T). For a more detailed

discussion of suppressor variables the reader sliould consult
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the following references (McNemar, 1962; Van de Geec, 1971;

Harris, 1975) (6, 10, 16).

Finally, when there is a moderate or greater degree of

multicollinearity among the predictors in the regression equation,

making an assessment of the relative importance of the indepen-

dent variables for predicting errors is not readily accomplished

by inspecting only the beta coefficient for a given predictor
(Ferguson, p. 402) (4). For example, with two predictors the
value of R can be shown to be equal to

R B + B2 + 2B B2 rI 2 . (6.0)

In this case the predicted variance is comprised of three additive
parts. B2 represents a contribution by predictor X1 , B 2 a con-
tribution by X2 , and 2BlB2 r1 2 is a component which involves the
correlation between and X2 . Clearly then, evaluating the

relative contribution of a predictor in the multiple regression
equation requires that correlation terms and other predictor's
beta coefficients be considered simultaneously. This would not
be the case, however, had each of the predictors been statis-

tically independent of other variables in the equation.

6.3.2 Errors/Progra= f(SI + Normalized Variables)

As previously discussed in Section 5.0, prediction equations
for errors/program were also developed using the normalized
variables as predictors in combination with the Source Instruc-

tions (SI) variable, Xl. The results obtained from these
predictions provide information on how effectively the origi-

nal variables, once the effect of Source Instructions had been

"removed" from each predictor, combined with Xl to predict

errors. The prediction equation results are presented in

Table 6-8 through 6-12. Summary results for five and ten

6-21

__ _ ____ ___ ____ __ _ ____



TABLE 6-8. PROJECT M,
ERRORS/PROrRAM f(SI + NORMALIZED VARIABLES)

VARIABLES IN PREDICTION EQUATION

I I8MAX.)

MULTIPLE R .622 .6
t
I1 .654

MULTIPLE R .387 .411 .428
STD. ERROR OF ESTIMATE 8.362 8.251 8.220

VARIABLES (X) COEFFICIENTS rXY

Xl SOURCE INSTRUCTIONS .597 .564 563:t
X57 EXIT POINTS/SI - . . -!98 .213
X58 USING INSTRUCTIuNS/Sl .15 .31 - .126
X69 CONDITIONAL JUMPS/SI .148 .12J .132
X7T FUNCTIONS/SI .195 .155 .202
X71 SCALING'ROUNDING OPNS./SI -.- .170 161
X74 LOCK MACROS/SI .1194 ,Iql '
X82 FIXED PT. VAR. FREQ/SI 4
X9J REGISTER VAR. FREQ./SI --- ..'g 171
XlJ8 IS X AVG. NO. OPERATORS,' --- .:16 7 .116

ARITHMETIC IN3TR./SI

ANALYSIS OF VARIANCE

NC. SUN OF MEAN
PREDICTORS SQUARES oF SQUARE F

5 REGRESSInN 17178.586 5 3435.717 49.!34 4.0 1
RESIDUAL 27291,470 389 69.926

10 REGRESSION 18234.863 10 1823.486 26.7? 2 <.0011
RESIDUAL 261- .. 793 314 68.,:5

TOTAL 44379.b61 394

BEST SINrGLE PREDICTOR
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TABLE 6-9. PROJECT M,
ERRORS/PROGRAM s f(Sl + NORMALIZED VARIABLES),
ZERO ERRORS DELETED

VARIABLES IN PREDICTION EnUATION

1 1 I(MAX.)

MULTIPLE R 2.598 .617 .619
MULTIPLE R2  .357 .381 .383
STO. ERROR OF ESTIMiATE 9.161 9.069 9.465

VARIAULES WX) COEFFICIENTS rxy

X1 SOURCE INSTRUCTIONS .559 .549 .53311
X57 EXIT POINTS/SI --- - .383 - .195
XSB USING INSTRUrTIONS/SI ,136 .141 - .16,1
X61 ARITHMETIC INSTRUCTIOt'S/SI --- - .66 - .075
X69 CONDITIONAL JUNPS/SI .216 .160 .246
X7, FUNCTIONS/SI .169 .147 .142
X74 LOCK MACROS/SI .,194 .,;76 IGG
X37 LABELED ARRAY VARIAOLES/SI --- .164 - ..113
X92 UNDEFINED VAR. FREQ./SI .'.9., .113
X1,18 SI X AVG. NO. OPERATORS/ --- .089 .162

ARITHMETIC IN.TR,/SI

ANALYSIS OF VARIANCE

NO. SUM OF MEAN
PRI:DICTORS SQUARES OF SQUARE F

REGRESSION 17949 .352 5 273 .973 3-3.215 . tRESIDUAL 25J92.578 299 33.922

U REGRESSION 14862.613 11 11+3.261 1.3,71 <-101
RESIDUAL 2417).B1G 29) 82,24

TOTAL 39gJ42 ,434 3.14

3BCST SINGLE PREDICTOR
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TABLE 6-10. PROJECT B,

ERRORS/PROGRAM z f(SI + NORMALIZED VARIAbLES)

VARIARLFS IN PREDICTION EQUATION

5. 10 1L4(MAX.)

MULTIPLE R 2  .717 .754 .772
MULTIPLE R .513 .569 .596
STD. ERROR OF ESTIMATE 4.323 4.178 4.136

VARIAULES (x) COEFFICIENTS rxy

Xl SOURCE INSTRUCTIONS .587 .651 .649:
X57 EXIT POINTS/Sl --- .159 - .057
X62 UNCONDITIONAL JUMPS/SI --- .1i10 - .09
X71 SCALING/ROUNDINC, OPNS./SI --- 256 344
X82 FIXED PT. VAR. FREO./SI .164 --- .358

X83 FLOATINr. PT. VARIABLES/SI --- .16Bi - ;I5
XS9 REGISTER VARIABLES/Si --- .114 - .316
X91 UNDEFINEO VARIA13LES/SI --- .269 - .278
X9J DO LOOPS, NESTED AT 4TH - .46 ..2) 143

LEVEL/SI
XIJ3 I.NSTR., 2ND LEVEL DO .193 .243 .241

LOOPS/SI
X ýiJS INSTR., 4TH LEVFEL DO .433 .422 .21;I

LOOPS/SI

ANALYSIS OF VARIANCE

NO. SuM OF MEAN
PREDICTORS SQUARES DF SQUAPE F p

5 REGRESSION 19' 2.14ti 5 386.421) 2J.6714 . J I
RESIUuAL 1331. ,14 l 13J. 6,J9 2

10 REGRESSION 2140I.797 I1 214.08 12.2-r) <.,!,'1
RES I LUAL 16.3.,1.51 1 17,h53

TOTAL 3763. IJ49 13

JLST S I :,GLr P<DICTO(,'
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TABLE 6-11. PROJECT B,

ERRORS/PROrGRAM x f(SI + NORMALIZED VARIABLES),
ZERO ERRORS DELETED

VARIABLES IN PREDICTION EQUATION

MULTIPLE R .735 .777 .787
MULTIPLE R2  .541 .604 .619

STD. ERROR OF ESTIIATE 4,196 4.1/09 3.982

VARIABLES (X) COEFFICIENTS r y

xi SOURCE INSTRUCTIONS .646 18 .658i:
X58 USING INSTRUCTIONS/SI --- 2:1s - .280
X59 COMMENT STATEMENTS/SI -. - .264 - .!35
X65 USER MACROS/SI --- .1'11 .;151
X76 ADDRESS VAR IAI3LES/SI --- .101 .137
X82 FIXED PT. VAR. FREQ,/SI --- .122 .366
X31 UNDEFINED VARIABLES/SI .15.1 .23 - .193
XKJ3 INSTR., 2ND0 LEVEL DO .233 .316

LOOPS/S I
x1J7 INSTR., 6TH LEVEL OR Lr.'IER ,2'"6 .21f ,4J3

DO LOOPS/SI
Xl'58 SI X AVG. NO, OPERATORS! - .137 - .134 - ,/6

ARITHMETIC INSTR-/SI

ANALYSIS OF VAPIANCE

NO,• SUMA OF MEAN
PREDICTORS SQUARES UF SQUARE F

5 REGRESSION 1344.559 5 3 .Ji8 2 .3 9. ,221
RESIDUAL 1566.967 8') 17.C,16

1/REGRESSION 2.101.177 1i 2 16,.118 12, ?2 2 ~
RESIDUAL 135J.349 34 16.J7b

TOTAL 3411.526 j'

"BEST SINGLE PREDICTOR

F
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TABLE 6-12. PROU.JECT P,
ERRORS/PRO.;RAN = f(SI + NORMAL!ZED) VARIABLES)

VARIABLES IN PREDICTION EOuATjoN

I 5 L IRU4AX.)

MULTIPLE R .880 .934 ,986
MULTIPLE R .774 .871 .972
STD. ERROR OF ESTIMIATE 2.698 2.239 1.276

VARIABLES (X) COEFFICIENTS rxy

Xi SOURCE INSTRUCTIONS .682 .384 .593:3
X59 COMMENT STATEVFNTS/$SI .2(,l .250 .2.15
X62 UNCONDITIONAL JUMPS/StI ,479 .612 .51.3
X63 CALLS/LINKS/S --- .198 - ,152
X69 CONDITIONAL JUMP./SI ,16 --- .224
X71 SCALINGIROJNDINr. OPtS./SI ... - .261 - .406
X77 ADDRESS VAR. FREQ./SI --. . .135 - J22
X32 FIXED PT. VAR. FREI./SI --- .369 - .158
X96 NON-NESTED Do LOOPS/SI --- - .312 - .393
X97 O0 LOOPS NESTED AT 2ND --- .167 ,:1(17

LEVEL/S I
XtU2 INSTR. IN NON-NESTED - .216 --- - .555

Do LOOPS/SI
X1.17 INSTR. IN 6TH LVFL OR --- .242 .224

LOWER DO00 LOPS/SI

ANALYSIS OF VARIANCE

NO. SUM OF MEAN
PREDICTORS SQUARES DF SQUARC F P

5 REGRESSION 724.4du 5 144.397 19.9.04 <',.Jl1
RESIDUAL 211.11J 2J 7.23,1

1.1 REG RrS SI ON' ,815,275': 1.1 8 1 .5 2 8 1h. f,2 <,, J I
RESIDUAL 12J..32, 21 5,1o13

TOTAL 95 5.59', 34

t BEST SINGLE PREDICTOR
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TAB3LE 6-14. TEN PREDICTOR SUWArY,
ERRORS/PROGRAM - f(SI + NORMALIZED VARIABLES)

VARIABLES a Mb a *b

REGRESSION COEFFICIENTS

XI SOURCE INSTRUCTIONS .56411 .54.919 .631'; .608-1: .334::
X57 EXIT POINTS/SI -. 098 - .183 .169
X58 USING INSTRUCTIONS/SI .181 .149 .208
X71 SCALING/ROUNDING OPNS./SI .071t .256 - .261
X82 FIXED PT. VAR. FREQ./SI -.063 .122 .369
X•(i8 SI X AVG. NO. OPERATORS/ .167 .089 .134

ARITHMETIC INSTR./SI
X59 COMMENT STATEP.!ENTS/SI .259
X62 UNCONDITIONAL ,JUMPS/5I .1.i0 - .264 .612
X59 CONDITIONAL JUMPS/SI .1Z. .160
X7; FUNCTIONS/Sl .155 .147
X74 LOCK MACROS/SI .J91 AJ76
X91 UNDEFINED VARIABLES/SI .269 .248
X103 INSTR., 2VD LEVEL DO .243 .3,16

LOOPS/S!
X1J7 INSTR., 6TH LEVEL DO .215 .224

LOOPS/SI

CORRELATION STATISTICS

ERRORS .563 .533 .649 .658 .593

r 2 , ERRORS .317 .234 .421 .433 .352

PREDICTION SUMMARY

R .641 .617 .754 .777 .934
R .411 .381 .569 .6J4 .871

a ALL OBSERVATIONS USED

bZERO ERROR RATES DELETED

":lbEST SINGLE PREDICTOR
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predictors are presented in Tables 6-13 and 6-14, respectively.

For projects M, B, and P a total of 45, 43, and 45 predictor

variables, respectively, were available to be automatically

entered in the prediction equation (see Table C-1, Appendix C).

The predictability of errors is improved only moderately

when ten versus five predictors are used in the equation.

However, except for project P (R2 -. 87), the predictability of

errors is generally low to moderate, ranging from R-.38 for

project M to R2 -. 60 for project B, using a combination of Xl

plus selected normalized predictors. Judging from the summary

data provided in Tables 6-13 and 6-14, there appears to be

little consistency of predictors appearing in the equations for

each project. For five predictors, only one predictor, Source

Instructions, appeared in each of the five prediction equations

that were developed across all three projects, with variable

Yrq, (>nditlonal ,Tu.nr-/',, apoar'{ng only for projects M and P.

F'or teen predictov's, onl! thr'ece variables, X., Source Instructions,

X71, Scaling/Rounding Operat~ions/i:]T, and X83, Fixed Point Variable

Frequency/SI, appeared in one or more of the equations developed

for each project.

Source Instructions is the best single predictor in each

of the equations, and when considered by itself, as also indi-

cated by the risults of the previous section, it can be used to

account for a large percentage of the variation in errors that

is accounted for by the combined set of 10 predictors selected

for each project's equation(s).

For equations that were developed when zero erroru were

deleted (Tables 6-9 and 6-il), it is found for ten predictors

that only minor changes resulted; R2 decreased .03 for project M

6-29
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and increased .04 for project B, with respect to the pre-
dictability of errors using the normalized variables.
However, as observed in the results of Section 6.3.1, the
variables in the prediction equations do change when these
zero error program-observations are deleted. For project B
only four of the ten predictors using all observations were
reselected when nine zero error observations were deleted,
whereas for project M seven of the ten predictors remained
in the equation when 90 observations were deleted from the
analysis.

The low predictability obtained when using the normalized
variables seems to result for two reasons. First, as reported
in Tables 6-8 through 6-12, the correlation of each normalized
variable with errors was generally very low. This indicates
that the variable errors per program has very little in common
with these normalized variables other than Source Instructions.
A second reason for this low predictability results from the
fact that a majority of these normalized variables were
uncorrelated with each other. Thus, each variable is contri-
buting independently to the prediction of errors, with only
a very small chance that a suppressor variable, i.e., a variable
with zero or low correlation with errors and correlated highly
with a predictor that correlates moderately to highly with
errors, could be present that would improve the predictability
of these variables.

Thoe resul-tts for project P are of interest here, not only
because of the high predictability obtained (R -. 871), but also
because this R2 value was only .024 less than the value of
R2 (.895) obtained when errors were predicted as a function of
the unnormalized variables. For each of the other two projects,
the reductions in R2 values were much larger (.18 for project M
and .16 for project B).

(1-30
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Comparing the predictors selected for project P in
Table 6-5 (i.e., when errors were predicted as a func-
tion of the unnormalized variables) versus the predictors
selected in Table 6-12 (when errors were predicted as a function

of Source Instructions plus the normalized variables), one
observes that seven of the ten unnormalized predictions of
Table 6-5 were reselected in their normalized form for the

[ equation in Table 6-12. The results of each table are repeated

in Table 6-15 for ease of comparison. (For project M with 395

observations, only four of the ten original variables were re-

selected in their normalized form, and for projuct B with 104

observations, five of the ten were reselected).

In Table 6-15 each of the correlations of unnormalized
variables with errors chnged in a negative direction when
the respective variable was normalized. For some variables
(X5, X8, X23, X28, and X53) this meant that their correlations
became smaller in magnitude, whereas for others (X17 and Xý2)
their correlation with errors increased in magnitude.

For project P this high predictability of errors (R 2.87) is
consistent with the high predictability (R2 =.89) obtained when
errors are predicted using the unnormalized variables (see

Section 6.3.1), and indicates that predictability is relatively
unaffected when the original program complexity variables, with
the effect of Source Instructions reinoved, are combined with
Xl to predict errors. One possible explanation for this con-
sistency of prediction using different sets of predictors
could be that project P implemented several new programming
techniques during its development, whereas projects M and B
did not to any great extent. Another explanation could be
that only a small, select group of particularly skilled pro-
grammers were needed to develop the 35 programs of project P;
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TABLE 6-15. PROJLCT P, PREDICTION EQUATIUo1 COMPARISON

RhSULTS VARIABLES COEFF IC IENT r

TabLe 6-5, 1<4 Using Instructions -. 465 .352

R -,895 X5 Communt Statements .762 .509

X8 Unconditional Jumps .S44 .664

X17 Scalinq/Rounding Opns. -. 176 -. 024

X23 Address Variable Freq. -. 386 .168
X28 Fixud Point Var. Freq. .6GOO .242

X37 UmiduginQe Vaiar Itis ..436 .567

<4.14 Non-Wested Do Lcops .386 .179
X51 Instr., 4th Level Do Loops -. ,74 .424

:,53 Instr., 6t., LOe l or Lower .602 .3AI
0ý Loops

Table 6-12, xI Source Instructiorn. .593Arxy

R'2.871 X59 Cotiunent Statrmint/5I .259 .205 -. 304

X62 Uncon.ditional JumpsiS! .C12 .5.3 -. 121

:163 Call'LinkaSL. . 196 -. 052

%71 Scaling/Rounding opnts./sT -. 261 -. ao6 -. 38.2

x77 Ad~jress "ri. rreq./SI -. 135 -. 022 -. 190

,X82 Fijou Pt. Var. Froq. S. .369 -. 5S - 3..00

:X96 Non-No4 strur Do Lcopu/St -. 302 -.. 393 -. 572

;<97 Do Lcops NtiotuJ At 2nd Lv]. 61 !6Z .1,47

>107 tunstr., , tmi Luv,-ii or L(w-ýr.2-12 .22u -. 117
L)o roops SI
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whereas a much larger group of programmers with varying

levels of skill and experience were needed to develop the

499 programs of project M and B, since both projects over-
lapped and were concurrent with each other at different stages

in their software development.

For any of the explanations presertid here, it should be
kept in mind that each of these projects was functionally

different from the others, and each was programmed in a

special purpose programming language. Any of these factors

in addition to others (e.g. small sample size of project P,
definition of variables, testing considerations for each pro-

ject) taken singly or in combination, could be largely
responsible for these obtained results.

In summary, with the exception of project P, the normalized

variables contributed appreciably less to the prediction of

errors than did the unnormalized variables whose results were

discussed in Section 6.3.1. This low predictability suggests

the need to identify any non-linear relationships that exist

among the predictors and errors, and then to define accordingly

the most appropriate non-linear model which could be used to

improve these predictors. Given these results, no prediction

of errors/program was attempted using selected sets of normalized

and unnormalized predictors in combination.

6.3.3 Error Rate/Program = f(Unnormalized Variables)

As discussed earlier in Section 5.0, the newly constructed

dependent variable, error rate/program, is analyzed in this

study both as a function of the unnormalized variables and as

a function of Source Instruction plus the unnormalized variables.

6-33

iX
4- -a



The prediction results using only the unnormalized variables
are presented in Tables 6-16 thru 6-20. Tables 6-21 and 6-22
present summaries of these results for five and eight predic-

tors, respectively. The summary for eight predictors is pre-
sented based on the lowest maximum number of variables to be
entered in the equation over all projects. The lowest maximum
value was eight for project P for this set of predictors. Here,

as in Section 6.3.1, the number of unnormalized predictor
variables that were made available for automatic selection

for entry in the regression equation were 45 each for projects
M. and P and 43 for project B (These variables are listed in
Table C-1 of Appendix C).

The summary results clearly indicate that a very low level

of predictability (R2 values ranged from .10 to .30) is obtained
for error rate using the unnormalized variables. This predic-
tion is consistently low over each of the regression equations
obtained for each project both for five and eight predictors,
with the exception of the eight predictor equation for project P
which yields a moderate prediction of R2=.535. Also, little
consistency among predictors is apparent across all three

projects. When eight predictors were used only two predictors,
:.,4, Using InrstructioriL and X5', Comiment Ftitemernts, appeared in

the results for all projects. For five predictors, Using
Instructions was the only variable consistently selected in the
equation for each project.

One interesting result observed for this set of predictions
was that when zero error rate programs in project M and B were
deleted from the analysis (see Tables 6-17 and 6-19), the pre-
dictions improved; R2 for project I1 increased .06, and R2 for
project B increased .12. In the two previous sections, the
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TABLE 6-16. PROJECT M,
ERROR RATE/PROGRAM = f(UNNORMALIZED VARIABLES)

VARIABLES IN PREDICTION EQUATION

8 9(MAX.)

MULTIPLE R .291 .314 .318
MULTIPLE R .085 .099 .1l1
STD. ERROR OF ESTIMATE 2.890 2.879 2.879

VARIABLES MX) COEFFICIENTS xy

Xl SOURCE INSTRUCTIONS - .722 - .820 - .131::
X4 USING INSTRUCTIONS .251 .243 .041
X5 COMMENT STATEMENTS --- .090 - .028
XIS CONDITIONAL JUMPS .370 .277 - .090
X16 FUNCTIONS .220 .219 .033
X35 REGISTER VARIABLES - .133 - .105 - .048
X37 UNDEFINED VARIABLES --- .148 - .047
X45 DO LOOPS NESTED AT 4TH LEVEL --- .074 - .050

ANALYSIS OF VARIANCE

NO. SUM OF MEAN
PREDICTORS SQUARES OF SQUARE F

5 REGRESSION 301.531 5 60.3ý6 7.221 <.001
RESIDUAL 3248.768 389 8.352

8 REGRESSION 350.229 8 43.779 5.281 <.001
RESIDUAL 3200.070 386 8.290

TOTAL 3550.299 394

: BEST SINGLE PREDICTOR
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TABLE 6-17. PROJECT M,
ERROR RATE/PROGRAM = f(UNNORMALIZED VARIABLES),
ZERO ERROR RATES DELETED

VARIABLES IN PREDICTION EQUATION

11CMAX.)

MULTIPLE R .371 .394 .410
MULTIPLE R2  .138 .155 .168
STD. ERROR OF ESTIMATE 2.877 2.862 2.855

VARIABLES (X) COEFFICIENTS rxy

Xl SOURCE INSTRUCTIONS -1.0o8 -1.375 - .292--
Xl USER MACROS .099 .096 - .123
X15 CONDITIONAL dUMPS .421 .356 - .211
X16 FUNCTIONS .202 .174 - .106
X27 FIXED PT. VARIABLES --- - .099 - .201
X38 UNDEFINED VAR. FREQ. .250 .21ý - .22.0
X45 DO LOOPS NESTED AT 4TH LEVEL --- - .083 - . 10
X54 SI X AVG. NO. OPERATORS/ --- .469 - .262

ARITHMETIC INSTR.

ANALYSIS OF VARIANCE

NO. SUM OF MEAN
PREDICTORS SQUARES OF SQUARE F

5 REGRESSION 396.015 5 79.2;13 9.571 <.001
RESIDUAL 2474.430 299 8.276

8 REGRESSION 446.174 8 55.759 6.8,08 <.001
RESIDUAL 2424.371 296 8.190

TOTAL 2870.445 3J4

BEST SINGLE PREDICTOR
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TABLE 6-18. PROJECT B,
ERROR RATE/PROGRAM f(UNNORMALIZED VARIABLES)

VARIABLES IN PREDICTION EQUATION

8 9(MAX.)

MULTIPLE R2  .362 .418 .430
MULTIPLE R .131 .175 .185
STD. ERROR OF ESTIMATE 2.380 2.356 2.354

VARIABLES (X) COEFFICIENTS rxy

X5 COMMENT STATEMENTS --- .162 - .105
X15 CONDITIONAL JUMPS - .481 - .568 - .2343c
X17 SCALING/ROUNDING OPNS. .143 .212 - .024
X37 UNDEFINED VARIABLES .358 .371 - .121
X49 INSTR., 2ND LEVEL DO LOOPS .223 .307 - .037
X50 INSTR., 3RD LEVEL DO LOOPS --- - .236 - .179
X52 INSTR., 5TH LEVEL DO LOOPS --- .173 .056
X54 SI X AVG. NO. OPERATORS/ - .339 - .424 - .217

ARITHMETIC_ INSTR.

ANALYSIS OF VARIANCE

NO. SUM OF MEAN
PREDICTORS SQUARES DF SQUARE F p

5 REGRESSION 83.803 5 16.761 2.959 <.05
RESIDUAL 555.173 98 5.665

8 REGRESSION 111.506 8 13.938 2.510 <.05
RESIDUAL 527.470 95 5.552

TOTAL 638.976 103

' BEST SINGLE PREDICTOR
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TABLE 6-19. PROJECT B,
ERROR RATE/PROGRAM = f(UNNORMALIZED VARIABLES),
ZERO ERROR RATES DELETED

VARIABLES IN PREDICTION EQUATION

8 15(MAX.-)

MULTIPLE R .484 .543 .629
MULTIPLE R .2.4 .295 .393
STD. ERROR OF ESTIMATE 2.144 2.093 2.022

VARIABLES (X) COEFFICIENTS rxy

X4 USING INSTRUCTIONS .371 .445 - .)184
X10 SYSTEM MACROS . -.. .292 - .212
Xl USER MACROS .328 .438 - .166
X28 FIXED PT. VAR. FREQ. .277 ... - .052
X43 DO LOOPS, NESTED AT 2ND LEVEL .383 - .121
X47 DO LOOPS, 6TH LEVEL OR LOWER --- .428 - .070
X49 INSTR., 2ND LEVEL DO LOOPS .316 .755 - .082
X50 INSTR., 3RD LEVEL DO LOOPS --- - .342 - .211
X54 SI X AVG. NO. OPERATORS/ -1.162 -1.522 -

ARITHMETIC INSTR.

ANALYSIS OF VARIANCE

NO. SUM OF MEAN
PREDICTORS SQUARES DF SQUARE F

5 REGRESSION 125.202 5 25.040 5.447 <.001
RESIDUAL 409.144 39 4.597

8 REGRESSION 157.667 8 19.708 14.500 <.c01
RESIDUAL 376.680 86 4.380,

TOTAL 534.346 94

BEST SINGLE PREDICTOR
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TABLE 6-20. PROJECT P,
ERROR RATE/PROGRAM = f(UNNORMALIZED VARIABLES)

VARIABLES IN PREDICTION EQUATION

8(MAX.)

MULTIPLE R .643 .731
MULTIPLE R2  413 .535
STO. ERROR OF ESTIMATE 1.048 .985

VARIABLES CX) COEFFICIENTS rxy

X2 ENTRY POINTS - ,499:c ... . .322
X3 EXIT POINTS --- ,438:' - .309
X4 USING INSTRUCTIONS - .319 -1.172 - .208
X5 COMMENT STATEMENTS .636 1.105 .132
X18 SHORT DO LOOPS --- - .369 - .136
X20 LOCK MACROS - .400 - .276 - .086
X28 FIXED PT. VAR. FREQ. --- .361 - .130
X35 REGISTER VARIABLES - .276 .... 245
X51 INSTR., 4TH LEVEL DO LOOPS ---. .434 - .220
X53 INSTR., 6TH LEVEL OR LOWER ... .881 - .129

DO LOOPS

ANALYSIS OF VARIANCE

NO. SUM OF MEAN
PREDICTORS SQUARES OF SQUARE F

5 REGRESSION 22.427 5 4.485 4.087 <.01
RESIDUAL 31.824 29 1.097

8 REGRESSION 29.002 8 3.625 3.733 <.,1
RESIDUAL 25.249 26 .971
TOTAL 54.251 34

BEST SINGLE PR DICTOR
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TABLE 6-21. FIVE PREDICTOR SUMMARY,
ERROR RATE/PROaRAM f(UNNORMALIZED VARIABILES)

VARIABLES Ma Mb sa 5l p

RECRESSION COEFFICIENTS

X4 USING INSTRUCTIONS .251 .371 - .319
X15 CONDITIONAL JUMPS .371 .421 - .81:"
XI SOURCE INSTRUCTIONS - .7223 -1.08019
XlI USER MACROS .099 .328
X16 FUNCTIONS .220 .202
X35 REGISTER VARIABLES - .133 .276
X49 INSTR. 2ND LEVEL .223 .316

DO LOOPS
X54 SI x AVG. NO. OPERATORS/ .339 -1.16211

ARITAMETIC INSTR.

X2 ENTRY POINTS , .9g921

CORRELATION STATISTI.CS

rn, SI 1.000 1,ail .902 .979 .263

rSI,ERROR RATE - .131 - .292 - .195 - .276 - .301

r 1ERROR RATE - .131 - .292 - .234 - .314 - .322
mERROR RATE .J17 .085 .J55 .96 .1•4

PREDICTION SUMMARY

S.291 .,71 .362 .484 .643

.085 .138 .131 .234 .413

aALL OSSERVATIONS USED

bZERO ERROR RATES DELETED

::BEST SINGLE PREDICTOR
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TABLE 6-22. EIGHT PREDICTOR SUMMARY,
ERROR RATE/PROGRAM : f(UNNORMALIZED VARIABLES)

VARIABLES Ma Mb Ba 8b

REGRESSION COEFFICIENTS

X4 USING INSTRUCTIONS .243 .4 4 5 -1.172

X5 CUMMENT STATEMENTS .090 .1G2 1.105

X15 CONDITIONAL JUMPS .277 .356 - .56811

X54 SI X AVG. NO. OPERATORS/. .469 - .424 -1.ý12211
ARITHMETIC INSTR.

X1 SOURCE INSTRUCTIONS - .82P¶:' -L.37511

XII USER MACROS .096 .438

X16 FUNCTIONS .219 .174

X37 UNDEFINED VARIABLES .143 .371

X45 DO LOOPS, 4TH LEVEL .074 .083

X49 INSTR., 2ND LEVEL DO LOOPS .3117 ,755

X5sI INSTR., 3RD LEVEL DO LOOPS - .236 - .342

X3 EXIT POINTS .438"

CORRELATION STATISTICS

S J1iI .J00 .90 2 .979 ,279

rSIERROR RATE - .131 - .292 - .195 - .276 - .301

r,, - .131 - .292 - .234 - .311 - .309',ERROR RATE...

r .017 0 8 5 .0 55 ,J96 .0 9i 5
,ERROR RATE

PREDICTION SUMMARY

R .314 .394 .418 .543 ,131

R.2 .199 .155 .175 ,*Th, .5 5

aALL O8SERVATIONS USE.)
bZERO ERROR RATES DELETED

"ILEST SINGLE PREDICTOR
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deletion of these same programs always increased the value
of R2 for project B and decreased or had little effect on the

R2 values for project M, when errors/program was being pre-
dicted. In these results, however, when predicting error rate
the R value for project M increases approximately 575 (from
.099 to .155), and the R2 value for project B increases approxi-
mately 68% (from .175 to .295). Both of these changes are

statistically significant. In fact, comparatively speaking,
when predicting error rate with the zero observations removed

from the analysis, one observes that the resultant increase
in R2 values could possibly be equated with the increase that
would result from three to four additional variables being
added to the prediction equation.

The increases observed here in the predictability of
error rate support the hypothesis stated in Section 3.0 which
suggested that programs with zero reported errors actually
had latent errors still in the program that had gone undetected
due to a lack of thoroughness in testing. As such, these
zero reported errors were considered as underestimates of
the total errors in the program, and their presence in the
analysis would therefore reduce the predictability of the depen-
dent variable and increase the predictability when they were
removed. M1ore will be said about the error rate measure and

this hypothesis later in the report.

As noticed in the previous section, when zero error rate

programs are deleted, different prediction equations result.
For project ZI, deleting the 90 zero observations results i.
only three of the eight predictors being reselected; for
project B, only three of the eight predictors were reselected.
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For the best single predictors of error rate among the

unnormalized variables that were in the regression equation,
no consistency at all is found across each project (see Tables
6-21 and 6-22). It is interesting to note at this time that

several of the equations that were developed for this set of

predictions do not contain the best single predictor of error
rate among the total set of unnormalized variables. For
example, for project M using all 395 observations (see Table
6-16), the best single predictor is X7, Arithmetic Instructions

(rx7, error rate - -. 148) and not XI) Source Instructions
(rxl,error rate " -. 131). Xl is, however, the best predictor,

as reported in Table 6-18, when the 90 zero error rates are
deleted from the analysis for project :1. For the results of

project B presented in Table 6-19 (95 observations used), the

best predictor is X15 Conditional Jumps (r: 1 5, error rate "
-. 331). Finally, for the results of project P using five and
eight predictors (see Table 6-20), variable X2, Entry Points

(rx2, error rate - -. 322) is the best predictor of error rate.

The fact that some of those best single predictor vari-

ables were not present in the various prediction equat±ons

that were generated accentuates the need to proceed with caution

when any attempt is made to decipher the relative contributions

of each variable to the prediction from a multiple regression

analysis. Clearly it is the combination of variables which

should be considered and not any one variable separate from

the others.

In summary, for this set of predictions, with the exception

of the moderate prediction of error rate obtained for project P,

it is found that linear combinations of unnormalized variables

produce relatively low level predictions for error rate. This
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appears to be due to the low correlations that each of the
selected predictors had with error rate (see Tables 6-16 to
6-19). These low correlations stand in stark contrast to the
moderate to high correlations that these same unnormalized
variables had with errors. This shows that when the effect
of Source Instructions is removed from the error variable,
the normalized error variable (error rate) has little left in
common with any of the unnormalized predictors.

Thus it seems clear that these results reiterate and
demonstrate the fact that a large portion of the relationship
between the unnormalized variables and errors/program result
from the combined influence of Source Instructions in each.
This is what was found for the results as presented in Section
6.3.1, errors as a function of the unnormalized variables.
It appears warranted, then, that any future predictions of error
rate from combinations of the unnormalized variables should
investigate non-linear models, or use variables other than those
investigated in this study.
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6.3.4 Error Rate/Program - f(SI + Normalized Variables)

The final set of prediction equation results are presented

in Tables 6-23 thru 6-27 for five and ten predictors, wherein
error rate is being predicted from a linear combination of the

normalized variables and Source Instructions. Summary Tables
6-28 and 6-29, for five and ten predictors, are also provided.

The number of predictors that were made available for selection
by the regression procedure were 45 each for projects 1.1 and P

and 43 for project B (see Table C-1).

In viewing the summary results one can observe that the
use of ten versus five predictors substantially improves the

predictions for each project. The percentage increase in

values of R2 for each project ranged from an increase of 165

for project P to an increase of 23? and 38,I, respectively, for

projects M and B. Additionally, the predictability of error
rate using this set of predictors (R2 values ranged from .34

to .47 for 10 predictors) is low, but generally higher than the

previous results obtained for error rate (i.e., in Section 6.3.3).
Again project P is an exception. For project P the percent

of variance accounted for by five predictors is R2 - .81;

22
for ten predictors R2 .. These results repre:6ent t~he highest

values of R2 obtained for project P over all the prediction

equations that were developed for this project.

Using ten predictors, variable X58, Using Instructions/SI,

is the only predictor that appears consistently in each of the

prediction equations for all projects. For two of the three

projects, M and B, this variable is also the best single

predictor of error rate. For these two projects Using Instruc-

tions/SI accounts for 475 (for project B) and 54, (for
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TABLE 6-23. PROJECT M,
ERROR RATE/PROGRAM = fCSI + NORMALIZED VARIABLES)

VARIABLES IN PREDICTION EQUATION

5_ 1 16(MAX.)

MULTIPLE R 2.545 .603 .625
MULTIPLE R .297 .364 .390
STD. ERROR OF ESTIMATE 2.532 2.426 2.393

VARIABLES (X) COEFFICIENTS rxy

X56 ENTRY POINTS/SI .244 .229
X57 EXIT POINTS/SI -- - .366 .123
X58 USING INSTRUCTIONS/SI .350 .281 .397,
X59 COMMENT STATEMENTS/St --- .179 .341
X64 SYSTEM MACROS/SI --- .173 .279
X70 FUNCTIONS/SI .257 .246 .245
X81 FIXED POINT VARIABLES/SI -- - .114 - .024
X87 LABELED ARRAY VARIABLES/SI - .129 - .106 - .116
X90 REGISTER VARIABLES - .165 - .118 - .165

FREQ./SI
X91 UNDEFINED VARIABLES/Sl .lG7 .116 .320

ANALYSIS OF VARIANCE

NO. SUM OF MEAN
PREDICTORS SQUARES DF SQUARE F E

5 REGRESSION IJ55.927 5 211.185 32.935 <.4J01
RESIDUAL 2494.371 389 6.412

10 REGRESSION 1290.469 1ý 129.047 21.928 <.J01
RESIDUAL 2259.830 384 5.885

TOTAL 3550.299 394

:" BEST SINGLE PREDICTOR
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TABLE 6-24. PROJECT M,
ERROR RATE/PROGRAM = f(SI + NORMALIZED VARIABLES),
ZERO ERROR RATES DELETED

VARIABLES IN PREDICTION EQUATION

5 1 22CMAX.)

MULTIPLE R .610 .644 .679
MULTIPLE R .373 .415 .462
STD. ERROR OF ESTIMATE 2.454 2.390 2.341

VARIABLES (X) COEFFICIENTS rxy

X58 USING INSTRUCTIONS/SI .319 .273 .471:9
X60 LABELED INSTRUCTIONS/SI .105 .221 .227
X64 SYSTEM MACROS/SI .202 .i99 .374
X66 EQUATE STATEMENTS/SI --- .092 - .051
X68 LOGICAL CONNECTORS/SI --- .137 .107
X70 FUNCTIONS/SI .192 .178 .174
X73 NESTED SHORT DO LOOPS/SI --- . .96 - .035
X81 FIXED POINT VARIABLES/SI ... . .082 - .020
X84 FLOATING PT. VARIABLE --- .104 - .103

FREQ./SI
X91 UNDEFINED VARIABLES/SI .214 .277 .415

ANALYSIS OF VARIANCE

NO. SUM OF MEAN
PREDICTORS SQUARES DF SQUARE F

5 REGRESSION 1069.392 5 213.878 35.507 <.001
RESIDUAL 1801.053 299 6.024

10 REGRESSION 1190.689 11 119.069 20.840 <.001
RESIDUAL 1679.755 294 5.713

TOTAL 2870.445 304

BEST SINGLE PREDICTOR
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TABLE 6-25. PROJECT B,
ERROR RATE/PROGRAM :f(SI + NORMALIZED VARIABLES)

VARIABLES IN PREDICTION EQUATION

5 10 13(MAX.)

MULTIPLE R .494 .579 .605
MULTIPLE R .244 .336 .365
STD. ERROR OF ESTIMATE 2.221 2.137 2.123

VARIABLES (X) COEFFICIENTS r

X57 EXIT POINTS/SI .141 .362 .219
X58 USING INSTRUCTIONS/SI .304 .363 .312--
X61 ARITHMETIC INSTRUCTIONS/SI . -.. .139 - .069
Xb4 SYSTEM MACROS/SI . -. . .391 .041
X68 LOGICAL CONNECTORS/SI .-- .158 .038
X91 UNDEFINED VARIABLES/SI --- .158 .140
X97 DO LOOPS NESTED AT 2ND --- - .270 .114

LEVEL/SI
X99 DO LOOPS NESTED AT 4TH - .653 - .680 - .211

LEVEL/SI
X103 INSTR., 2ND LEVEL DO .241 .399 .191

LOOPS/SI
X105 INSTR., 4TH LEVEL DO .5d8 .525 - .13,0

LOOPS/SI

ANALYSIS OF VARIANCE

NO. SUM OF MEAN
PREDICTORS SQUARES DF SQUARE F

5 REGRESSION 155.766 5 31.153 6.318 <.001
RESIDUAL 483.210 98 4.931

10 REGRESSION 214.411 11 21.441 4.697 <.01
RESIDUAL 424.565 93 4.565

TOTAL 638.978 103

BEST SINGLE PREDICTOR
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TABLE 6-26. PROJECT B,
ERROR RATE/PROGRAM = fCSI + NORMALIZED VARIABLES),
ZERO ERROR RATES DELETED

VARIABLES IN PREDICTION EQUATION

5 23(MAX.)

MULTIPLE R2 .614 .683 .775
MULTIPLE R .376 .467 .600
STD. ERROR OF ESTIMATE 1.935 1.842 1.734

VARIABLES (X) COEFFICIENTS rxy

X57 EXIT POINTS/SI --- .199 .284
X58 USING INSTRUCTIONS/SI .386 .480 .467:-
X60 LABELED INSTRUCTIONS/SI --- - .237 .037
X62 UNCONDITIONAL JUMPS/SI --- .228 - .090
X66 EQUATE STATEMENTS/SI - .232 - .160 - .232
X70 FUNCTIONS/SI . -.. .205 - .090
X71 SCALING/ROUNDING OPNS./SI --- .282 .035
X91 UNDEFINED VARIABLES/SI .241 .360 .193
X103 INSTR., 2ND LEVEL DO .259 .223 .216

L.OOPS/S I
X108 SI X AVG. NO. OPERATORS/ - .182 - .148 - .143

ARITHMETIC INSTR./SI

ANALYSIS OF VARIANCE

NO. SUM OF MEAN
PREDICTORS SQUARES DF SQUARE F

5 REGRESSION 201.097 5 4,0.219 10.741 <.001
RESIDUAL 333.249 89 3.74

10 REGRESSION 249.335 10 24.933 7.349 <.001
RESIDUAL 285.012 84 3.393

TOTAL 534,346 94

BEST SINGLE PREDICTOR
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TABLE 6-27. PROJECT P,
ERROR RATE/PROGRAM = f(SI + NORMALIZED VARIABLES)

VARIABLES IN PREDICTION EQUATION

I 20(MAX.)

MULTIPLE R .901 .969 .994
MULTIPLE R2  .812 .939 .989
STD. ERROR OF ESTIMATE .593 .373 .209

VARIABLES (X) COEFFICIENTS rxy

X58 USING INSTRUCTIONS/SI . -.. .316 - .176
X59 COMMEN'r STATEMENTS/Sl .606 .467 .813"
X61 ARITHMETIC INSTRUCTIONS/SI --- .535 .009
X62 UNCONDITIONAL JUMPS/SI .361 .336 .421
X69 CONDITIONAL JUMPS/SI --- .143 .209
X74 LOCK MACROS/SI - .260 ... .020
X84 FLOATING PT. VAR. FREQ./ST . .30 - .181
X97 DO LOOPS NESTED AT 2ND .309 .555. .552

LEVEL/SI
X98 DO LOOPS NESTED AT 3RD .. .,85 .169

LEVEL/SI
X102 INSTR. IN NON-NESTED - .265 - .535 .031

DO LOOPS/SI
X105 INSTR. IN 4TH LEVEL --- - .255 - .121

DO LOOPS/SI

ANALYSIS OF VARIANCE

NO. SUM OF MEAN
PREDICTORS SQUARES DF SQUARE F

5 REGRESSION 44.038 5 8.808 25.908 <.001
RESIDUAL 1,.214 29 .352

10 REGRESSION 50.918 11 5.092 36.667 (.001

RESIDUAL 3.333 24 .139

TOTAL 54.251 34

BEST SINGLE PREDICTOR
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TABLE 6-29. TEN PREDICTOR SUMMARY,

ERROR RATE/PROGRAt4 2 f(SI + NORMALIZED VARIABLES)

VARIABLES Ma Mb Ba Fb

REGRESSION COEFFICIENTS

X58 USING INSTRUCTIONS/SI ,281: .278t .363it .480 - , ' 16
X91 UNDEFINED VARIABLES/SI ,11G .277 .158 .360X57 EXIT POINTS/SI - .366 .362 .199t

X64 SYSTEM MACROS/SI .173 .199 - .391
X70 FUNCTIONS/SI .246 .178 - .205
X59 COMMENT STATEMENTS/SI .179 .467:
X6}i LABELED INSTRUCTIONS/SI .221 - .237
X61 ARITHMETIC INSTRUCTIONS/SI - .139 .530
X62 UNCONDITIONAL JUMPS/SI .228 .336
XG6 EQUATE STATEMENTS/SI - ilq92 - . 161i
X68 LOGICAL CONNECTOR/S I .137 .158
X81 FIXED PT, VARIABLES/SI .114 - .jJ82
XB4 FLOATING PT. vAR. .1,14 .300

FREQ ./SI
X97 DO LOOPS, 2ND LEVEL/SI - .271, .555
X1•3 INSTR., 2ND LEVEL DO .399 .223

LOOPS/SI

CORRELATION STATISTICS

rSIERROR RAT! .131 - .292 - .195 - .276 - .301

2'),ERROR RATE .397 .471 .312 .467 .813

S21,ERROR RATE .158 .222 ,'A97 .213 .660

PREDICTION SLUM-MARY

R 26113 .644 .57) .6,93 .96
q .364 .415 .336 .467 ,939

ALL OuSERVATIONS USED

bZERO ERROR RATES UELETED

"XBEST SINGLE PREDICTOR
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project M) of the total variance accounted for by all 10

predictors selected for each project. In addition, for all

projects, the normalized program complexity variables are also

contributing significantly to the predictions for error rate
in these results.

Although the correlation of Using Instructions/SI with

error rate is low (from .31 to .47) for those projects where

it is the best predictor, the fact that this variable does
contribute substantially to error rate predictions is important

to consider. Using Instructions as described in Table B-i are
instructions used to establish data structure interfaces in

the program. An interpretation then for the normalized vari-

able, Using Instructions/SI, is the number of instructions pe.'

100 lines of code used to establish data structure interfaces;
or more simply interpreted, data interfaces per 100 lines of

code. The fact that interfaces have been found to contribute

to errors are results which support the findings of other
researchers (Thayer et al. 1976; and Okimoto, 1975) (13, 14),

as cited earlier in Section 6.2.

Once again as found in the immediately preceding results

for error rate as a linear function of the unnormalized vari-

ables, one can observe that the predictions for error rate are

consistently improved for projects "I and B when tho zero

program-observations are deleted from the analysis. This result

suggests that analysis of error rate supports the hypothesis of
lack of thoroughness of testing in some of these programs.

An interesting finding in these results is that variable

X59, Comment Statements/SI, is the best single predictor for

error rate for project P. The fact that X59 alone accounts
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for approximately 70% of the total variance accounted

for by all ten predictors selected for this project is sur-

prising. This percentage was even higher, 81%, when five

variables are considered.

The fact that the results for project P have been so

consistently different from the results of projects M and B

suggests that the function being programed for project P, the

software development and testing environment, the programmers

and management of project P, and the CENTRAN language itself

are all contributing in some distinct or interactive way to

produce these unique results. Possibly the fact that project

P implemented the new programming techniques whereas the other

projects did not explains the high predictability of error rate

in these results. Although it could be suggested that structured

programs would require only few comment statements due to the

inherent readability that structuring a program is supposed to

provide, the opposite could have been true for these programs.

That is, since over half (66") of the programs were structured

and more readable as a result, more comments may have been

incorporated as a direct result of being able to more readily

understand the flow of logic and read the programs. This

may have resulted in errors per 100 lines of code being more

easily detected when problems arose in the programs. NJeverthe-

less, regardless of the numerous plausible hypotheses that

could explain the results for project P, given the information

available, it can only be suggested that a variety of factors,

as stated aboLv, ry accouiL for thesc' r,,sult 3,
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In summary, since the results obtained for both sets of

predictions for error rate were relatively low (see Sections

6.3.3 and 6.3.4), no further attempt to combine the normalized

and unnormalized variables to predict error rate was made.

Data Interfaces per 100 lines of code is a significant contri-

butor to the predictions for error rate. Other program

complexity variables also significantly contribute to these

predictions. Error rate was found to be a meaningful measure

to use for detecting the effects of error free programs on the

prediction of programming errors. Finally, the low predictions

obtained suggest the need to analyze these variables with

non-linear models.

6.3.5 Validation of Prediction Equations for Sample S

The major purpose of validating predictions is to identify

and examine how well the same level of predictions can be
maintained, carried over, or reproduced for a separate data

sample. This separate sample is assumed to be drawn from the

same population as the first sample for which the prediction

results were obtained. In practice, this validation procedure

(normally referred to as cross-validation) is usually carried

out by applying the obtained regression coefficierts to an

identical set of predictor variables collected for the separate

data sample. Using these coefficients and the predictor vari-

able values, estimates of the dependent variable can then be

directly computed. These estimates, when correlated with the

actual values of the dependent variable that have been collected

for the separate sample, can then provide information about

how well this separate sample validates; i.e., shows consistency

of prediction, with the original sample. Validation, then, can

be considered as an important means for assessing to what extent

prediction results can be generalized to other samples.
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Generally, it has been found that when the regression

coefficients obtained from a multiple reqression analysis on

one sample are applied to a second sample, the correlation

between the weighted predictors and the dependent variable in
the second sample will be less than the multiple correlation

value (R) originally obtained from the first sample. This

phenomenon is referred to as shrinkage of the multiple corre-

lation coefficient (Kerlinger and Pedhazur, pp. 282-284;
Ferguson, pp. 401-402) (4, 8). Basically, the reason for this

is that the multiple regression performed on the sample data
capitalizes on chance. The highest product moment correlations
are selected to enter into the regression equation, and on subse-

quent samples these correlations would probably be lower, there-

fore yielding a somewhat lower overall multiple correlation.

The extent of the bias in sample values of R is directly
dependent upon the population value of the multiple correlation

coefficient, the sample size, and the number of predictor
variables used in the equations. For validation purposes, it
is possible to estimate the amount of shrinkage that will

result when a second samnle is to be validated. The computa-

tional formula used to provide this estimate is as follows:

A2 6where R = the estimated squared multiple correlation in the

population; R- the obtained squared multiple correlation for

the first sample used to develop the prediction equation;
N - the number of observations in the second (i.e., validation)

sample; and k - the number of predictor variables used to obtain

the R2 value.
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For sample S (as well as for sample T), no separate

sample of programs were initially randomly selected and set

aside to use for cross-validation purposes. The interest at

that time wes to achieve the maximum attainable predictions
and the most representative results possible, using all the

observations that had been provided for each data sample.

Resultantly, for validation of sample S predictions, formula

(6.0) was used to estimate the amount of shrinkage of the
obtained values of R2 that would result had samples for each

project been set aside or made available for validation.

2
Since the highest values of Rk were obtained when errors/

program were predicted as a function of the unnormalized variables

(see results of Section 6.3.1), only these equations were
selected for validation. The validation results are presented
in Table 6-30 for both five and ten predictors. The obtained

2value of R , number of observations used, and table reference

for the prediction equation results as cited in Section 6.3.1

are presented at the top of Table 6-30. 22 values and shrinkage
results are presented for sample sizes of N - 20, 50, and 150

programs, including a sample size equal to the actual number

of observations used for the original predictions.

Clearly these results show that the prediction equations

could be expected to validate: i.e., show increasing consistency

with the obtained values of R2 , as the sample size ircreases

and as the ratio of predictors to observations in the sample

becomes smaller. For example, for the five predictor equation

for project Mi, with a predictor to sample size ratio of
A2 2

k/N - l:., R is about two-thirds the size of R (i.e., .239

and .514 respectively). When the hypothetical validation
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sample size is increased up to N a 150 and k/N = 1:30, the
estimated shrinkage of R2 is very small (approximately .02),
with an expected change in A2 from .514 to .499.

For additional discussion concerning the role of valida-
tion procedures in multiple regression analysis the reader

should consult the following texts and articles (Kerlinger and
Pedhazur, 1973; Lord and Novick, 1968; Herzberg, 1969; and
Mosier, 1951) (7, 8, 9, 12).
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6.4 Sample T Resulta

Prediction equation results for errors 2nd error rate
using sample T programs are presented in the following pages.
Results for five predictors were chosen primarily bevause

they were generally found to provide almost as good a predic-
tion of the dependent variable as that obtained when the
statistically selected maximum number of variables had been
entered in the equation. Usually a maximum of six to nine
predictors were entered in the equation. In several subsystem
predictions for error rate, the maximum number of predictors

was less than five. The maximum nurber of predictors entered

and t-ruiS.ple correlation coefficient, R, obtained using
these predictors are nevertheless reported for each subsystem and
for each dependent variable. Due to the large number of

regression equations being presented in this section, the
analysis cf variance tables are presented only for those re-
gressions for which the same set of predictors in all subsystems
were available to be used. Additionally, as with sample S,

results are reported for each subsystem using all observations
and with zero errors deleted from the analysis. Finally, all

results presented in this section should be interpreted cau-
tiously. This particularly applies to the results obtained

for (1) subsystems B, D, and E, specifically, because of the very
limited number cf program-observations in each (see Table 2-6),
and (2) subsystems F and G, because of the large percentage of

programs and source code in each subsystem having zero reported
errors (again see Table 2-6, Sample Subsystem Statistics).
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6.4.1 Results for Errors/Program

The following tables of prediction equations and other

results for errors/program are presented in this section:

Results Tables

Errors/Program - f(Program 6 - 3 1 a, 6 - 3 2 b

Structure + Programmer Variables)C

Errors/Program = f(Program 6-33a, 6 -34b

Structure Variables Only)d

Five Predictor Summary 6-35

Best Single Predictor Summ.ary -_.6-36

Analysis of Variance Tables, 6-37

(Program Structure Variables Only)

Validation Results, 6-38a, 6-39b

(Program Structure Variables Only)

aAll observations used

bzero error programs deleted

CA maximum of 23 predictors were available for selection in

these predictions

dA maximum of 20 predictors were available for selection in

these predictions.
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A list of sample T predictor variables that were candidates

for entry in the prediction equations for errors/program

(i.e., Tables 6-31 thru 6-34) is presented in Table C-2 of

Appendix C.

In the summary results (Table 6-35) for errors one can

observe that over all subsystems of sample T, regardless of
whether or not programmer variables have been entered in the

prediction equation, errors/program is consistently highly
predictable with obtained values of R2 in the range from .76
for subsystem A to .99 for subsystem D. Furthermore, there
initially appears to be little consistency among the best

single predictors of errors in each subsystem. However, con-

sidering the high correlations that were reported among the
five predictors TS, BR, LS, DATA, and EX, there is a high
degree of commonality among the best predictors for five of

the eight subsystems (A, C, E, G, and H). This commonality is

reflected in the correlation that each best predictor has with
Total Source Instructions (TS), reported in Table 6-35 as

the value of r *,TS for each subsystem. Note that the best
predictors reported are those found among only the five pre-

dictors that were in the regression equation. Sometimes the

best predictor among all variables to be selected for entry in

the equation may not appear in the equation (see, for example,

sample S results, section 6.3.3). Table 6-36 presents similar

results as in Table 6-35, with the difference beiac that the

best single predictor among all the variables available for

selection has been identified.
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For these results (Table 6-36), specifically for errors

predicted from a linear combination of the program structure

variables when the zero errors are deleted from the analysis,

the bust single predictors from seven of the eight subsystems
are all found to hpve nearly identical high correlations with

Total Source Instructions. Although some of the best pre-

dictors are different variables, each is basically reflecting

the effect of length of program to a high degree. Notice
also, in Tables 6-35 and 6-36, that the best predictors' cor-

relations with errors are generally moderate to high. As
indicated by the percent of variance in errors accounted for

by the best single predictors alone (see values of r2  errors

in Table 6-35), they account for approximately 51, (sub-

system C) to 94% (subsystem G) of the total variance in errors

explained using all five predictors (i.e., the R2 values).
Ccnsequently, this suggests that other program complexity
variables are also significantly contributing to error pre-

dictability in some subsystems.

Referring to Table 6-31, when errors are predicted using

both the program structure and programmer variables, it is
observed that only one programmer variable, WKLD, apnears in

any of the equations; and then for only two of six subsystems.

Thus, the RAT and RAT /WKLD variables were not selected as

statistically meaningful variables for the five predictor
solutions being presented. When the three programmer vari-

ables were deleted from the analysis and errors were predicted

only as a function of the program structure variables (see
Table 6-33), it is observed that (1) the high predictability

of errors is basically unaffected and (2) the predictors

selected for each subsystem do not significantly differ from
those selected when the programmer variables were also included.
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In general then it can be stated that the three programmer
variables were of little value for predicting errors. Among
the possible reasons for this finding is that the RAT and

WKLD measures as constructed to evaluate programmers do not
truly reflect performance or load, or that these variables
should not be analyzed in a linear model.

Clearly, the RAT and WKLD measures as constructed and

applied are subjective measures used by the program managers
to evaluate programmers. Additionally, the measures used as
observation values in the sample T data represent averages
of RAT and WKLD for the total number of programmers (anywhere
from 1 to 15) responsible for programming each program or
function. Moreover, for each subsystem the correlations of
each of the RAT, WKLD, and R!AT/WTILD variables with errors
were generally found to be low to moderate. A combination
of these factors is contributing to the relative ineffec-

tiveness of these variables in the prediction of errors. It
is of value that these variables were included in this analy-
sis, in spite of their insignficant contributions to the pre-
diction of errors. Since programmers do contribute to errors

(as a matter of fact they made the errors analyzed in this

study), it is suggested that more objective and standardized
personnel and job assessment instruments be developed and

applied for future studios. Also, a non-linear model may be
more useful than a linear one to evaluate the effectiveness

of programmer variables for error prediction purposes. Some

additional discussion of the programmer RAT and WE<LD variables

is presented in Section 7.1.
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With respect to the consistency among predictors being
selected for each subsystem in•'the error prediction equations

for errors predicted using the program structure variables
only (Table 6-33), Computational Statements (COZIP) and Comment
Statements (COX) appeared in five of the eight subsystem

equations. These same predictors appeared in four of the six
subsystem equations of Table 6-31, errors predicted using
both the program structure and programmer variables.

Finally, regarding the effects on the predictability of

errors when zero errors are deleted (Tables 6-32 and 6-34),
there are no significant changes in values of R2 over most
subsystems regardless of the predictors that were being used
in the analysis. The only exception is subsystem F which
has 15 (approximately 41% of the total) zero error programs.
The resulting increase was from R - .80 to R2 - .85,

(Tables 6-33 and 6-34). H1owever, as in the results for

sample S, when zero error programs are deleted, different
prediction equations usually result. A good example of this

can be seen for subsystem D in Tables 6-31 and 6-32. The

results are presented here for ease of comparison.

All Observations Used Zero Errors Deleted
(1,J-15) (N-4=I)

IF .444* LL .298

SYS .281 IF/TS .459

COM -. 192 IO/TS -. 552

IO/TS -. 656 EX/TS .678*

EX/TS .555 COM/TS -. 206

R2 = .973 R2 .974

"*Best single predictor of variables in equation.
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These differences in predictors and coefficients demonstrate

the sensitivity of multiple linear regression analysis to

small changes in correlations.

The analysis of variance and prediction equation valida-

tion results are presented in Tables 6-37 and 6-38, respectively,

for regressions where only the program structure variables

are considered. The analysis of variance results indicate

that the predictor variables account for a significant pro-

portion of the total variance of errors/program. The F

statistic for each regression equation is statistically signi-

ficant at less than the .001 level of significance. For the

validation results of Table 6-38, when 10 programs are considered

as a validation sample, only a low to moderate shrinkage in

the squared multiple correlation coefficient (P 2 ) for each
subsystem occurs. This snrinkage was tiae greatest for sub-

system A with the largest number of observations (n=51) . When

zero errors are deleted from subs'sterm A (see Table 6-39),

it is observed that the shrinkage is considerably less as
compared to the shrinkage of a2 when all observations are used.

As is indicated in both sets of validation results, all

equations showed increasing consisten~cy of prediction with the
original values of R 2 as larger validation samples were used

to compute the shrinkage estimates for each subsystem. Con-

sidering these results, it appears that had actual validation

samples been available, each of the obtained predinh'ion equa-

tions would have shown conistent predictability of errors

in these samples.

In stunmxary for errors/program, we can state that high

predictability results when using a linear combination of

program structure variables for errors collected throughout the
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validation, integration, acceptance, and operational phases
of software development. Predictors which heavily reflect
length of program are generally found to be the best predictors
of errors; however, other program structure-complexity vari-
ables also contribute significantly to the predictability of
errors. And finally, the programmer rating and workload
variables as defined for this study are found to be of little
value for contributing to the prediction of errors.

6,4.2 Results for Error Rate/Program

The results for the analysis of error rate/program presented
in this section are as follows:

Results Tables

Error Rate/Program - f(Program Structure + 6-40a, 6 - 4 1 b

'Dro.rai~rsr Variables) C

Error Rate/Progrant w f(Program Structure 6-42 6 -4 3b
Variables Only)d

Five Predictor Summary 6-44

Analysis of Variance Tables (Program 6-45
Structure Variables Only)

aAll observations used

bzero error rates deleted

CA maximum of 23 predictors were available for selection
in these predictions.

dA maximum of 20 predictors were available for selection
in these predictions.
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A list of sample T predictor variables that were candidates
for entry in the prediction equations for error rate is pre-
sented in Table C-3 of Appendix C.

The summary results for error rate (Table 6-441 indicate
that regardless of whether or not the programmer variables
have been made available for selection in the prediction
equation, moderate to high predictability is achieved for
each subsystem of sample T, with the exception of subsystem F.
The best single predictor of error rate is one of the two nor-
malized Program Interface variables, AP/TS and SYS/TS, which
appear consistently as the best predictions in seven of the
eight subsystems when the program structure variables with
zero error rates deleted are considered. Additionally, these
interface variables account for a large portion of the overall
predictability in each subsystem, and other program complexity
variables appear to be significantly contributing to error
rate predictions (i.e., as evidenced by the difference between
R and r 2 *, error rate for each subsystem).

Also a consistent finding in the analysis is that the
majority of predictors in the equations for error rate are
the normalized variables. This finding is observed for all
prediction results (Tables 6-40 to 6-43) obtained for error
rate.

By examining Table 6-40, it is noted that -hen the pro-
,jrammer variables RAT, WKLD, and RAT/WKLD are made available

for selection, only the Proqrammer Ratina variable (RAT) iA
selected, and then only for two of thc' six subsystems. In

Table 6-42 which reports the predictions after removing the
programmer variables from tne analysis, the results show that

6-95
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(1) the predictability of error rate is essentially unaffected,
and (2) the predictors selected for each subsystem do not

significantly differ from those selected when the programmer
variables are made available to enter the regression equation.
In the analysis the correlations of each of the programmer
variables with error rate were observed to be low over each

of the subsystems; low to moderate correlations were observed

for these variables with the errors/program measure. Thus,
the programmer variables as defined for this study have a
negligible contribution to the predictability of both errors

per program and error rate per program.

To examine the consistency of predictors selected over
all subsystems, all results (Tables 6-40 thru 6-43) show that
the three normalized variables AP/TS, SYS/TS, and EX/TS, are

the variables most frequently appearing when predicting error
rate over all 28 regression equations.

Examining the predictability of error rate when zero

error rates are deleted, it is found that with the exception
of subsystems F and G, no major changes in the value of R2

over each of the subsystems are observed. Since subsystems F

and G are quite unique relative to each other and to the six
remaining subsystems with respect to the large percentage of
error free programs in each, a further analysis of error rate
in F and G is presented in Section 7.2.

The analysis of variance results presented in Table 6-45

indicate that the F statistic for each subsystem's regression

qudtion is significant at less than the .001 level of signi-

ficance. The linear predictions then account for a statisti-
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cally significant proportion of the variability in error rate,
wherein this proportion is measured by the values of R 2 for
each subsystem.

6.4.3 Sample T Prediction Consistency Analysis

The predictions for both errors and error rate are
generally moderate to very high for each data sample over all
predictions obtained. For the analysis of sample T results,
a set of five predictor variables is used uniforrmly across
all subsystems to predict errors, and a different set of
five is used to predict error rate. A significant change in
the squa.ed multiple correlation coefficient from that
obtained for the best five predictors in each subsystem w1ould
indicate inconsistency.

For errors/program the five predictors from subsystem A
are used (i.e., TS, AP, I/O, CONP, and CON). For error rate,
the subsystem A predictors (SYS, AP/TS, SYS/TS, ZX/TS, CO:I/TS)
are also chosen. These predictors were used since they were
automatically selected by the regression proceduro based on
the largest sample of observations (n=51) availablel for

sample T.

The results of this consistency analysis are presented

in Tables 6-46 (for errors) and 6-47 (for error rate). All

predictors in each set of variables are forced into the equa-
tion in order to obtain comparable results over each subsystem.
Since the predictors for subsystem A had not been selected

by the regression procedure for the other subsystems, a
reduction in the value of R2 for each subsystem except A

was ecpected.
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For errors/prograrI, it is observed that, using the same
set of predictors, moderate to high predictability is maintained

over all subsystems. For error rate, less consistency of

prediction results. Nevertheless, for six of the eight

subsystems (A thru F) error rate predictions are still in

the moderate to high range.

One particular interpretation of these results is that

since the same variables appear in the equations for each

subsystem, an estimate of how these variables contribute to
errors in general may be obtained. In spite of the apparent
differences among the subsystems of sample T, there is re-

markable consistency in results of applying the same set of

five predictors to all subsystems. These results may then
apply to programming in general, or at least to command and

control systems using JOVIAL J4.

Since the predictability of errors and error rate was

higher for sample T programs than for those of sample S,
predictions for errors and error rate were obtained using
the two distinct sets of predictors over all 249 program
observations of sanple T. These results are reported in
Table 6-48. The predictions were observed to be in the moderate
range for both errors and error rate. Given the larger sample

involved and the increased variability over all variables

that results from this aggregation over all subsystems, the
predictions may be generally more indicative of the true

values of R, R2 , and other correlation and regression statis-

tics in the population of programs of which these 249 programs

are but a sample.
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TABLE 6-48. SAMPLE T PREDICTION RESULTS USING ALL SUBSYSTEMS

(N=2 49)

REGRESSION PREDICTION

VARIABLE COEFFICIENT SUMMARY

ERRORS/PROGRAM

TS 27 5 8- r ERRORS= .765
2

AP .218 ERRORS=: .586

I/O - .050 R= .797

COMP - .116 R .635

COM .043 STD. ERR. EST.= 6.464

ERROR RATE/PROGRAM

SYS .041 r:CERRORS. .641
2

AP/TS 459:: r 9,ERRORS= .412
SYS/TS .206 R: .714

EX/T.4 .235 R2: .510

COM/TS .1185 STD. ERR. EST.= 2.171

PEST SINGLE PREDICTOR
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Several comments are important here regarding the

consistency analysis results obtained using each subsystem

(Tables 6-46 and 6-47) vis-a-vis the results observed using

all sample T programs (Table 6-48). First, for errors/program,

at the subsystem level (Table 6-46), Total Source Instructions

(TS) is the best predictor of errors, and the four program

complexity variables (AP, I/O, COMP, COM) are contributing

significantly to error predictability. In contrast, at the

aggregate level over all subsystems, Total Source Instructions
alone accounts for almost 92% of the total variance explained

by the five predictors. At this level the four complexity
variable have only a negligible effect on the predictability

of errors/program. An important implication is suggested by

these results. When estimating the total number of errors

likely to be found as a result of formal testing for a group

of progra~ns that are functionally heterogeneous (and similar

in nature to those of sample T), the size or length of each

program may be the single most important predictor. Whereas

for programs that are more functionally homogeneous, other
program complexity variables in addition to program length

should be considered in the prediction process to achieve

some initial estimate of errors/program.

For error rate/program, regardless of whether the pre-

diction is based on sets of programs at the individual subsystem

level or using the entire sample of 249 programs, each of

the program complexity variables (SYS, AP/TS, SYS/TS, EX/TS,

COM/TS) in combination are contributing to the predictability

obtained. At the subsystem level this is true for at least

five of the eight subsystems, A, C, E, G and H. This result

suggests that the overall variability of the error rate measure

and its predictors (four of which were normalized program

6-104
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complexity measures) were essentially unaffected by the
aggregation over all subsystems. Thus, error rate/program
and its predictors may be more stable measures to be used for

prediction purposes, regardless of the functional mixture of
programs being considered.
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7.0 ADDITIONAL ANALYSIS

7.1 Error Rate and Programmer Variables

Since the programmer Rating (RAT) and Workload (WKLD)

variables proved to be of no predictive value to errors or

error rate when combined with program structure variables,
it was decided that a more thorough analysis of these vari-

ables particularly as they related to error rate, would be

performed.

Essentially in this analysis the average workload and

average error rate for different categories of programmer ratings

are calculated. Then, how different levels of programmer

rating and workload affect the error rate is determined. This

analysis is performed over all program-observations of sub-

systems A thru E. The results of this analysis are presented

in Table 7-1.

Each of the average error rates is statistically tested

(using the 't' test) for significant differences with each

neighboring mean value in the following manner: tie average

error rate for programmers rated less than 10 (i.e., 1.50)

was tested and found not statistically different from the

average error rate of programmer's with ratings from 11 to

12 (i.e., 3.2:2). The average error rates for these tw;o groups

combined was then tested for a significant difference with

the next error rate value (1.62), showing again no significant

difference. The average of the three error rates was then

comparcd with the value of 2.99; again no statistical signifi-

cance was found. (This same procedure was followed for each

of the remaining groups of programmer ratings). The only

7-1
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TABLE 7-1. SAMPLE T, ERROR RATE AND PROGRAMMER

VARIA11LE RELATIONSHIPS

PROGRAMMER NUMBER AVERAGE AVERAGE

RATING PROGRAMS WORK LOAD ERROR RATE

< 10 8 1.00 1.50

11-12 18 .97 3.22 2.43

13-14 15 1.10 1.62

15-16 22 1.18 2.99

17 27 1.33 4.36 4.36

18 16 1.33 2.057

19 19 1.34 2.56 2.44

20 10 1.34 2.85

(N:135)
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statistically significant differences that exist occur as

indicated between the bracketed groupings of means; i.e.,

(1) between the average error rates for programmers rated in

the S.0 to 16 and 17 categories, and (2) between the error

rates for programmers rated 17 or higher (i.e., the difference

between 4.36 and 2.44 was significant at the .05 level).

Basically the following observations can be made from

these results:

(1) the lower rated programmers with lighter workloads

do produce significantly fewer errors per 100 lines

of code as compared with the higher rated programmers

who had the heavier workloads;

(2) the same high rated programmers (i.e., RTT - 17)

produce significantly more errors per 100 lines

of code as compared with the top rated programmers,

irregardless of the relatively high workload each

group had; and

(3) the highest rated programmers having the heaviest

workload produced as many errors per 100 lines of

code as did the lowest rated programmers having

the lowest workload.

Additionally, using this kind of analysis as compared to the

linear regression approach, one can clearly see the non-linearity

in the relationship of error rate with both programmer workload

and rating. That is, as both RAT and WKLD variables increase,
error rate also increases up t, a point (i.e., RAT - 17 ) and

then becomes smaller with still increasing values of RAT and WKLD.
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As cited in information provided about the RAT and WKLD

variables of sample T, many of t/he programmers specifically

rated in the RAT - 17 category were managers not only managing

the software development effort but also programming at the

same time. This seems to suggest that managers who also

contribute to the programming effort contribute significantly

"to errors in programs, more so than programmers who do nothing
but program.

The method of analysis used here best approximates the

standard analysis of variance approach typically used to

analyze experiments involving one or more factors. Although

the analysis of variance methodology is generally not used

for purposes of prediction, when properly applied it can be

very useful for identifying relationships among data variables

that may go undiscovered using linear regression analysis.

Additionally, the kinds of interpretations of data

"relationships that can be made using the analysis of variance

approach may in many instances have more operational meaning

than those allowed using the regression approach. For this

reason, the analysis of variance approach and other mc-hods

of analysis (e.g., contingency table analysis using chi-square

tests, non-linear regression models) are strongly suggested

as additional methodologies which can and should be employed,

where applicable, in future software reliability analysis

studies where programmer, project, test, software environment,

and error data are all available for analysis.

7-4
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7.2 Error Rate and Source Instructions

Throughout the study of error rate/program it was observed

that the correlation between error rate and total source
instructions was consistently low, but negative, with one
exception. For each of the sample T subsystems, the correla-
tions, as reported in Table 7-2, exist between error rate and
the Total Source Instructions variable (TS), when the error

free programs are included and then excluded from the analysis.

Basically, the consistent increase in magnitude of each
of these correlations (with the exception of subsystem G)
and the consistency of the low to moderate linear relationship
between error rate and source instruction3 over all subsystems,
when the error free programs were deleted, supports the hypo-

thesis that longer programs are less thoroughly tested. The

hypothesis asserts that longer programs were less thoroughly
tested relative to the shorter programs. This is likely to be

the case since as the length of a program increases, a more rapid

than linear rate of increase in the number of paths through the

program usually would occur, thus increasing a program's com-

plexity. This increased complexity would then result in týe

longer programs requiring more time to test and thus they might

very well be less thoroughly tested.

The fact that this hypothesis can be considered as a

plausible explanation here and that these results are not just

correlational anomalies is borne out in the following analysis

of error rate presented for both subsystems F and G (see

Tables 7-3 and 7-4, respectively).
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TABLE 7-2. CORRELATIONS BETWEEN ERROR RATE AND TOTAL SOURCE
INSTRUCTIONS FOR SAMPLE T SUBSYSTEMS

SUBSYSTEM rTS,ERROR RATE

USING ALL WHEN ERROR FREE

OBSERVATIONS PROGRAMS DELETED

A -. 238 C51) -. 361 (44)
Ba -. 671 (16) -. 671 (16)

C -. 235 C39) -. 317 (36)

D -.508 (15) -. 555 (14)

E -.414 (14) -. 496 (13)

F -. 096 (37) -. 442 (22)

G .167 (45) -. 070 (34)

H -. 211 (32) -. 251 (31)

a SUBSYSTEM B HAD NO ERROR FREE PROGRAMS.
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For both sets of results, all programs were classified

as being either above or below the average value of source

instructions; the average value of error rate/program was

then computed for each classification. Essentially for both

subsystems, no differences were observed between the average

error rates for the shorter programs versus the longer
programs, whereas the differences between the average length
of the shorter compared to that of the longer programs was

strikingly different. Now, when the error free programs are
removed and only the programs with errors are classfied
according to the same procedure, significant differences
between the error rates for the shorter versus the longer
programs do exist. Finally, when this same set of programs

is classified even further into three categories as

indicated, the negative, low level linear relationship between
error rate and source instructions becomes apparent.

These results are interpreted as lending support to the

hypothesis that longer programs, in particular those with no
errors reported, were less thoroughly tested than the shorter

ones.

tn summary then, it is not known whether the programs with

zero reported errors are truly error free. When these programs

are considered to have unreported or latent errors -emaining

in them and are removed from the analysis, then the consistency

of the relationship between error rate and length of program

becomes more strikingly apparent, and hypotheses concerned with

thoroughness of testing of the longer versus that of the shorter

programs become more readily testable.
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8.0 CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

The major purpose of this study was to determine how
predictable programming error measures are from a combination

regression analysis. By examining the degree of predictability

obtained, the effectiveness of the linear regression model
in software error prediction studies may then be evaluated.
With respect to this purpose, given the analysis results
obtained, the following conclusions can be drawn:

0 The predictability of programming error measurementJ
are variable, ranging from very low to very high.
For the errors/program measure, predictability is
found to be consistently in the moderate to very
high range. For the error rate/program measure,
predictability is generally less than that obtained
for errors/programs; with the predictability ranging

from very low to high and with less consistency than

errors/program throughout all the predictions obtained.

* The variability in the predictions obtained over

both data samples is c:onsidered to be strongly
related in varying degrees to each of the following
factors:

a. functional differenc among the various
programs that were ueveloped

b. differences in thc programming language used

8-i
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c. the length of time formal error data collection

wso carried out

d. the amount and thoroughness of testing of

each program

e. inadequacy of the linear model to provide

perfect predictability

f. other programmer, project, and management

factors affecting the software development

process.

8.2 Direct Recommendations

The following set of recommendations discuss measures

that can be taken to bring about an increased consistency of

prediction of programming error measures in future software

error prediction studies. These recommendations pertain to

the predictor variables, the programming error variables,

applications of the multiple regression procedure, and software

testing procedures.

(1) Predictor Variables - Predictor variables should be

accurately identified and concisely defined prior tc the begin-

ning of software development. Predictors should be identified

which not only reflect selected program and language-specific

characteristics, but moreover they should include a variety

of candidate programmer, management, and software development

environment variables which are suspected of reasonably

affecting the quality and reliability of the software being

developed.

8-2
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A baseline set of predictor variables should be defined

and applied over the general range of software projects so

that consistency of measurement can be obtained. This baseline

set can be compiled from the results of this study's five and

ten predictor summaries. As further studies identify addi-

tional predictor variables, the baseline set should be

expanded.

Data for these predictor variables should be collected

throughout the successive phases of software development. Any

significant changes or modifications should be recorded,

dated, and the cause of the error determined.

In order to benefit the generalizability of future error

prediction studies wherein different programming languages

will be involved, present and future research effort should

be directed toward identifying those language and program charac-

teristics that may be equated or made comparable between two

or more languages.

(2) Programming Error .1easures - These measures should

be concisely defined and collected throuqhout all phases of

software development. In addition to a description of the

errors, their symptoms, and the program changes required to

correct the errors, other data should be collected which would

include when the error was found, the method used to detect

the error, and an estimate of the total effort (e.g., man-hours,

computer time, documentation changes, etc.) involved in error

identification and correction.
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Of particular importance for error prediction purpcses

is that a taxonomy or typology of programming etrors be developed

such that more definitive predictions can be developed for

separate versus a gross aggregation of error types.

Each of the errors, regardless of error type, should further

be classified and weighted with respect to their criticality

or severity for impeding the achievement of the software develop-

ment project objectives. Once this has been accomplished, then

predictions of errors having different criticality can be per-

formed and the most important variables for each can then be

idehtified. Existing error collection tools could be expanded

to classify and weight errors. Manually collected error data

should also be classified and weighted t tiier manually or by

interfacing with error collection tools.

(3) Multiple Regression Applications - A parallel pre-

diction approach which utilizes multiple regression analysis

applied at various milestones or stages of software development,

testing, and operational usage is recommended for future error

analysis and prediction studies.

The parallel prediction approach proposes to rxake separate

predictions of errors during each of the designated stages

during the project, using a specified set of predictors for

which data would be collected at each of these stages. Of

special interest in this analysis is the identification of

particular criterion error measures (e.g., gross error counts

or error rates for given error types, or errors weighted by

severity) whose overall predictability is chancing meaningfully

over time. Also of interest at each stage is the relative

importance of each of the predictor variables in the equations.

Clearly, any of the predictors found to systematicall1- increase
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(or decrease) in explanatory power over time is deserving of

further attention.

Additionally, since data would be available from prior

time periods using this approach, one could investigate any

time lag relationships that may exist between the predictors

and errors when predicting errors at later stages in the

project.

Using this parallel predictions approach, both linear

and non-linear models should be investigated.

(4) Software Testing Procedures - Throughout this report

the thoroughness of testing in each of the two data samples

was repeatedly stressed as an important factor contributing

towards the identification of errors in programs. It is

strongly reconmmended that the amount of testinq of program

modules be measured in software development projects as much

as possible so that errors weighted by amount of testing can

be analyzed. This measure of amount of testing should address

possible paths tested and ranqe of possible inputs and outputs

exercised.
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8.3 Recommendations for Further Research

Throughout the course of this study, the need to perform

additional research on the available data became obvious.

However, such research was beyond the scope of this contract.

Four of the major topics of interest and value to other software

quality and reliability studies are presented.

(1) Non-Linear Regression Analysis - This study suggests

that non-linear regression will improve both the consistency

of the predictions and the predictability of each of the pro-

gramming error measurements. A continued analysis of both

sample S and sample T data along with other available data

samples should be investigated for error prediction purposes

using non-linear regression models.

Consider, for example, that the actual error rate of

programs that have been thoroughly tested increases ur to

certain level for a given number of source instructions, -nd

then it increases only slightly thereafter for continuing

increases in program length. That is, the error rate becomes

almost constant after a certain program length. This error

rate could be estimated for the sample S and sample T aata

using the equation

Y = a -4- bx + zx (S.0)

The independent variable (x) in this equation is the total

source instructions variable (Xl or TS) for either sample.

The dependent or predicted variable (Y') is the new estimated

value of error rate cbtained for each program in the two data
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samples that are presently available. This newly estimated

er revised error rate (hypothesized for thoroughly tested

programs) would replace the observed error rates for many of

the programs used in this study, which were probably not

thoroughly tested. Figure 8-1 depicts the observed error

rate-program length relationships for the three projects of

sample S as contrasted with the new or revised estimates of

error rate using the non-linear model described above.

Using these revised or new estimates (Y') of what the

actual error rates for these sample programs should be, this

new variable can be predicted using various non-linear forms

of the predictor variables in a multiple regression equation.

(2) Predictions By Error Type and Severity - As mentioned

in the earlier discussion of recommendations, it is strongly

recommended that errors be classified accordina to tvye and

s~verity and that predictions be obtained for those classifi-

cations. During this study no data-was available for either

sample that would enable the assignment of such classifications

to the errors in each program. If this data is available,

it woulc then be possible to develop different regression

equations for different types of errors. The results of such

an analysis should show higher predictability and give insights

more directly related to cause-effect than were obtained by

aggregating errors.

(3) Analysis of Error Free Programs - if the zero reported

error programs that appeared throughout the analysis were in

reality error free, then an analysis directed at determinina

the characteristics of these programs would be very meaningful.

Those characteristics which differentiate error free from

error prone modules could be determined.
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(4) Analysis of Constant Size Programs - In addition to

the normalization procedure used to construct additional pre-

dictor variables for this study and the partial correlation

procedure discussed in Section 5.0, one straightforward pro-

cedure for controlling for the effect of program length in

this analysis would be to analyze different sets of constant

size programs in each given sample. This could be accomplished

by developing groups of programs, for example, that had an

average program length of 50, 150, 250, etc. source instructions

each. Then only tnose programs fallinL: within I or 1/2 standard

deviation above and below the mean wouid, for statistical

purposes, be considered as a group with constant program length.

A major benefit of this analysis would be to identify how the

predictability of errors and error rate differs over each of

these groups, and what variables are the most important

predictors of errors .for smaller, medium, and longer length

programs.
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8.4 Proposed Support Tools and Techniques

To most effectively apply the results of the study tcward

obtaining more error free software, support tools and techniques

are required. This section proposes tools and techniques

conceptualized throughout this study.

(1) Collection of Data for Predictor Variables - Predictor

variables which define program characteristics can be measured

from source code. Those measurement programs already in exist-

ence for specific projects are known as scanner programs. To

enable the most accurate and effective method of measuring the

predictor variables, Language Scanners should be developed as

part of support software packages. Language Scanners should

measure, at a minimum, the basel.ine set of predictor variables

defined under the first recommendation of Section 8.2. Language

Scanners can easily be added, for example, to a programming

support library which stores and maintains source code as well

as performs all compilations. A Language Scanner can be prc-

vided to support each language in the same manner as a pre-

compiler is provided for each structured language.

(2) Evaluation of High Order Languages - Existing high

order languages should be analyzed to identify those charac-

teristics which are most closely correlated with errors. When

such characteristics are identified, it is necessary to determine

which of these characteristics do cause errors. For those cases

when cause is established, preventive measures could be introduced.

This type of evaluation can apply not only to existing languages

but also to any language under development or modification.

8-10

""0*~ -'F - . -

-1 .4



*. ,'

(3) Test Support Tools - Test support tools are under

development throughout the software industry, particularly

in the areas of identifying program paths. Such a tool should

also contain a capability for weighting (or accepting manual

weighting) the various paths. Weighting might include such

factors as frequency of use and criticality. Testing emphasis

could then be directed according to the weighting scheme.

Another test support tool to be developed is an input/

output range definer. Representative inputs can be selected

for path testing from the required range of values. The

number of different outputs can be compared against the re-

quired range of outputs. Untested outputs can be identified.

Both testing aids proposed here will assist in iden-

tifying desired testing and in determining where available

resources should be applied during testing. A combination

of number of paths exercised and the range of inputs and

outputs tested is a further measure related to software

system reliability.
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- 8.5 Summary of Recommendations

The following list is a sumnary of recommendations

resultihg from this study. Items (1) through (4) are direct

applications of the results.

(1) Definition and collection of data for predictor

variables.

(2) Error classification and weightings.

(3) Apply regression models, both linear and non-linear,

throughout the software development process.

(4) Define testing techniques which measure thoroughness

of testing.

Items (5) through (9) recommend further research.

(5) Investigate non-linear multiple regression.

(6) Classifiy errors according to type and severity and

obtain predictions for these classifications.

(7) Continue analJysis of error-free programs from a

broader data sample.

(8) Continue analysis of programs grouped by relative

size from a broader data sample.

(9) Apply the prediction model obtained by this study

over a broader data sample.

8-12
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Items (10) through (12) identify software suppurt tools and

techniques which will assist in implementing the preceeding

recommendations.

('0) Develop Language Scanners to measure predictor

variables.

(11) Evaluation of high order languages.

(12) Develop test support tools which a) identify and

w.eight program paths, and b) determine representative

test input to prc5.uce required outputs.
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APPENDIX A

(This Appendix contains a discussion

of considerations on the measure of

error to be analyzed ini software

error prediction studies)
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Considerations on the Measure of Error

to be Analyzed in Software

Error Prediction Studies

In addition to the very complex problem of the

definition of an error, there is the puzzling problem of

what measure should be used to represent the errors in a

routine, module, or program, once the data is collected.

(Of course, this decision should be made prior to data

collection). Is it the number of errors in a program?

If so, this leaves something to be desired, since a very

short program of say, ten instructions with three errors,

would "look" the same as the dependent variable of a very

large program of say, 3000 instructions with three errors.

These extremes in program length do exist in the data

analyzed for sample S and sample T. The most desirable

solution to the problem would be to collect data in such

quantities that every individual program length could be

represented a number of times, consider each program

length a sample, and then analyze the data accordingly.

Since such a luxury is not likely to exist, some compromise

is required.

Error rate; i.e.,errors per 100 source instructions,

is quite commonly used as an error measure and is somewhat

more meaningful than number of errors. it still s Lff<ýrs,

however, from the fact that a program of ten instructions

with two errors receives the same weight as a program of

100 instructions with 20 errors, one of 1000 instructions

with 200 errors, etc. If the regression of errors as a function

of number of source instructions is in fact linear, and the

regression line goes through the origin, this procedure

would be quite proper. By linear regression it is not

meant that the relationship should be perfect, but that a
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straight line gives as good a representation of the rela-

tionship as any curve of higher degree.

If the regression is in fact linear and the line

does not pass through the origin, a better approach would

be to eliminate the linear effect of number of source in-

structions on number of errors by partial correlation and

then analyze the residual error. It is indicated then, also,

that the influence of source instructions should be elim-

inated from all other independent variables.

It would seem that in view of all the problems inherent

in the identification and definition of an appropriate error

measure, a hopeless situation exists. However, if

the problem is formulated in terms of what variables are

used to predict errors, it becomes more clear. First,

recognizing that number of errors and error rate are two

distinct, though relateda, approaches to error measurement,

two separate dependent variables exist. To predict nurber

of errors, there are variables such as gross characteristics

of program length, mixtures of instructions of various types,

program complexity metrics, etc. To predict error rate,

all of these variables used to predict errors, plus other

program characteristics normalized to program length (either

by their rates per 100 source instructions or by partial

correlation) also exist.

When error rate is used as a ,m.asl=e oZ 7 am ri-

ablility, the cuestion arises as to whether to normalize

errors by the number of total source instructicns, the

number of executable source instructions, or even by the

number of generated machine language instructions. This is

a problem since the error measure always being analyzed is

arelated in that if the total number of errors in the program

equals zero, the error rate is necessarily zero.
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the number of errors found, and at any phase of testing,

there usually exists some (unknown) number oi- latent

errors in the program(s).

To clarify this point, consider that two programs
(designated as A and B) exist, each with 400 source in-
structions. A had 300 executable instructions and B has
200 executable instructions. During test and integration
(conducted by automated means) suppose four errors in A
and four errors in B were found. Normalizing by source

instructions, the error rate for A is 1.0 (error/100 source

instructions). For B the error rate is also 1.0. However,
by using executable instructions, the error rate for A is 1.33.
For B the error rate is 2.0. (Not considered here is the

problem of how many of the executable instructions wc ,e
actually executed in the test). Thus, hvyotheticallv

nothing is known of the number of errors in the non-executable

(i.e., not non-executed) portion of the programs.

The solution here is that the nor-aalizing factor should
depend upon the method of testing. If, for example, all

the code is examined (as in a code review), the number of
source instructions should be used. If only the executable
portion of the code is examined for errors, the number of
executable instructions should be used.
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APPENDIX B

(This Appendix contains descriptions

of the predictor variables for

both samples S and sample T as

discussed in Section 2.0).
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TABLE B-I. SAMPLE S PREDICTOR VARIABLE DESCRIPTIONS

VARIABLE DESCR I PTI ON

UNNORMAL I ZED:

X 1 NUMBER OF SOURCE INSTRUCTIONS

X 2 NUMBER OF ENTRY POINTS

X 3 NUMBER OF EXIT POINTS

X 4 NUMBER OF USING INSTRUCTIONS WHICH
ESTABLISH DATA STRUCTURE INTERFxCE

X 5 NUMBER OF COMMENT STATEMENTS

X 6 NUMBER OF LABELED SOURCE INSTRUCTIONS

X 7 NUMBER OF INSTRUCTIONS PERFORMING THE
ARITHMETIC FUNCTIONS ADD, SUBTRACT,
MULTIPLY, DIVIDE AND EXPONENTIATTON

X 8 NUMBER OF UNCONDITIONAL BRANCH
INSTRUCT IONS

X 9 NUMBER OF CALL/LINK INSTRUCTIONS

XIo NUMBER OF SYSTEM MACROS
(DOES NOT INCLUDE THE I:.STRUCTIONS
WHICH ARE GENERATED BY THE MACROS)

Xll NUMBER OF USER WRITTEN MACROS
(DOES NOT INCLUDE THE iKSTRUCTIONS
WHICH ARE GENERATED BY THE MACROS)

X12 NUMBER OF EQUATE !NSTRUCTIONS USED TO
EQUATE SYMBOLS TO REGISTERS, IMMEDIATE
OATA, OR OTHER VALUES

X13 NUMBER OF COMMENTED SOURCE INSTRUCTIONS
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TABLE B-1. SAMPLE S PREDICTOR VARIABLE DESCRIPTIONS
(CONTINUED)

VARIABLE DESCRIPTION

X14 NUMBER OF AND/OR LOGICAL CONNECTORS

X15 NUMBER OF CONDITIONAL BRANCH
"I NSTRUCT I ON'S

X16 NUMBER OF INVOKED FUNCTIONS SUCH AS
FLOOR, SQRT, LOG, ATAN ETC.

X17 NUMBER OF INSTRUCTIONS PERFORMING
SCALE/ROUND OPERAFIONS

Xis NUMBER OF SHORT DO INSTRUCTIONS
(WHEN MACHINE CODE GENERATED BY
CENTRAN DO INSTRUCTION WILL BE LESS
THAN 17 BYTES. USED TO MINIM'lIZE LOOP
EXECUTION TIME)

X19 NUMBER OF NESTED SHORT DO LOOPS

X20 NUMBER OF LOCK MACROS

X21 NUMBER OF SOURCE INSTRUCTIONS WITHIN
SHORT DO LOOPS

X22 NUMBER OF ADDRESS VARIABLES REFERENCED

X23 NUMBER OF TIMdES ADDRESS VARIABLES ARE
REFERENCED

X24 NUMBER OF TIMES ALL BINARY VARIABLES
ARE REFERENCED

X25 NUMBER OF CHARACTER VARIA3LES
REFERENCED

X26 NUMBER OF TINES CHARACTER VARIABLES
ARE REFERENCED
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TABLE B-I. SAMPLE S PREDICTOR VARIABLE DESCRIPTIONS

(CONTINUED)

VARIABLE DESCRIPTION

X27 NUMBER OF FIXED POINT VARIABLES
PIEFERENCED

X28 NUMBER OF TIMES FIXED-POINT VARIABLES
ARE REFERENCED

X2,9 NUMBER OF FLOATING-POINT VARIABLES
REFERENCED

X3ý NUMBER OF TI',IES FLOATING-POINT

VARIABLES ARE REFERENCED

X31 NUMBER OF HEXADECIMAL VARIABLES
REFERENCED

X32 NUMBER OF TIMES HEXADECIMIAL VARIABLES
ARE REFERENCED

X33 NUMBER OF LABELED-ARRAY VARIABLES
REFERENCED

X34 NUMBER OF TIMES LABELED-ARRAY
VARIABLES ARE REFERENCED

X35 NUMBER OF REGISTER VARIABLES
REFERENCED

X36 NUMBER OF TI,'MES REGISTER VARIABLES
ARE REFERENCED

X37 NUMBER OF VARIABLES WHICH WERE
REFERENCED BUT NOT DEFINED WITHIN THE
PROGRAM (UNDEFINED VARIABLES)

X33 NUMBER OF TIMES UNDEFINED VARIABLES
ARE REFERENCED
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TABLE B-1. SAMPLE S PREDICTOR VARIABLE DESCRIPTIONS
(CONTINUED)

VARIABLE DESCRI PT I ON

X39 TOTAL NUMBER OF VARIABLES REFERENCED

X40 NUMBER OF TIMES ALL VARIABLES ARE
REFERENCED

X41 NUMBER OF DO LOOPS

X42 NUMBER OF NON-NESTED DO LOOPS

X43 NUMBER OF DO LOOPS NESTED AT SECOND
LEVEL

X44 NUMBER OF DO LOOPS NESTED AT THIRD
LEVEL

X45 NUMBER OF DO LOOPS NESTED AT FOURTH
LEVEL

X46 NUMBER OF DO LOOPS NESTED AT FIFTH
LEVEL

X47 NUMBER OF DO LOOPS NESTED AT SIXTH
LEVEL OR LOWER

X48 NUMBER OF SOURCE INSTRUCTIONS IN ALL
NON-NESTED DO LOOPS

X49 NUMBER OF SOURCE INSTRUCTIONS IN ALL
SECOND LEVEL DO LOOPS

X50 NUMBER OF SOURCE I`,ISTRUCTIONS IN ALL
THIRD LEVEL DO LOOPS

X51 NUMBER OF SOURCE INSTRUCTIONS IN ALL
FOURTH LEVEL DO LOOPS
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TABLE B-1. SAMPLE S PREDICTOR VARIABLE DESCRIPTIONS
(CONTINUED)

VARIABLE DESCRIPTION

X52 NUMBER OF SOURCE INSTRUCTIONS IN ALL
FIFTH LEVEL DO LOOPS

X53 NUMBER OF SOURCE INSTRUCTIONS IN ALL
SIXTH LEVEL OR LOWER DO LOOPS

X54 AVERAGE NUMBER OF OPERATORS PER
ARITHMETIC INSTRUCTION (X7) X NUMBER
OF SOURCE INSTRUCTIONS

ERRORS/PROGRAM NUMBER OF ERRORS FOUND IN PROGRAM
DURING THE TEST AND INTEGRATION PHASE
OF SOFTWARE SYSTEM DEVELOPNENT WHICH
REQUIRED A CHANGE TO THE PROGRAMIS
CODE.

a
NORMALIZED-.

X56 NU.BER OF ENTRY POINTS/XI

X57 NUMBER OF EXIT POINTS/X1

X58 NUMBER OF USING INSTRUCTION WHICH
ESTABLISH DATA STRUCTURE INTERFACE/X1

X59 NUMBER OF COM',MENT STATEItENTS/X1

X61I NUMBER OF LABELED SOURCE INSTRUCTIONS/X1

X61 NUMBER OF INSTRUCTIONS PERFORMING THE
ARITHMETIC FUNCTIONS ADD, SUSSTRACT,
MULTIPLY, DIVIDE AND EXPONENTIATION/Xl

X62 NUMBER OF UNCONDITICNAL BRANCH
I NSTRUCT I ONS/X1
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TABLE B-1. SAMPLE S PREDICTOR VARIABLE DESCRIPTIONS
(CONTINUED)

VARIABLE DESCRI PTI ON

X63 NUMBER OF CALL/LINK INSTRUCTIONS/X1

X64 NUMBER OF SYSTEM MACROS/X1

X65 NUMEER OF USER WRITTEN MACROS/X1

X66 NUMBER OF EQUATE INSTRUCTIONS USED TO
EQUATE SYMBOLS TO REGISTERS, IMMEDIATE
DATA, OR OTHER VALUES/Xl

X67 NUMBER OF COMMENTED SOURCE INSTRUC-
TIONS/X1

X68 NUMBER OF AHD/OR LOGICAL CONNECTORS/X1

X69 NUMBER OF CONDITIONAL BRANCH
INS TRUCT I ONS/X 1

X70 NUMBER OF INVOKED FUNCTIONS SUCH AS
FLOOR, SQRT, LOG, ATAri ETC./X1

X71 NUMBER OF INSTRUCTIONS PERFORMING
SCALE/ROUND OPERATIONS/Xl

X72 NUMBER OF SHORT DO INSTRUCTIONS/X1

X73 NUMBER OF NESTED SHORT DO LOOPS/XI

X74 NUMBER OF LOCK MACROS/Xi

X75 NUMBER OF SOURCE INSTRUCTIONS WITHIN
SHORT DO LOOPS/X1

X76 NUMBER OF ADDRESS VARIABLES
REFERENCED/X1

X77 NUMBER OF TIMES ADDRESS VARIABLES
ARE REFERENCED/X1
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TABLE B-i. SAMPLE S PREDICTOR VARIABLE DESCRIPTIONS
(CONTINUED)

VARIABLE DESCR I PTI ON

X78 NUMBER OF TIMES ALL BINARY
VARIABLES ARE REFERENCED/X1

X79 NUMBER OF CHARACTER VARIABLES
REFERENCED/X 1

XQ, NUMBER OF TIMES CHARACTER
VARIABLES ARE REFERENCED/X1

X81 NUMBER OF FIXED-POINT VARIABLES
REFERENCED/Xl

X32 NUMBER OF TIPIES FIXED-POINT
VARIABLES ARE REFERENCED/XJ

X83 NUMBER OF FLOATING-POINT
VARIABLES REFERENCED/X1

X84 NUMBER OF TIMES FLOATING-POINT
VARIABLES ARE REFERENCED/X1

X85 NUMBER OF HEXADECIMAL VARIABLES
REFERENCED/X1

X86 NUMBER OF TIMES HEXADECIMAL
\VARIABLES ARE REFEREM•CED/XI

X37 NUMBER OF LABELED-ARRAY
VARIABLES REFEPENCED/X1

X88 NUMBER OF TIMES LABELED-ARRAY
VARIABLES ARE REFERENCED/XI

X89 NUMBER OF REGISTER VARIABLES
REFEPENCED/X1

X95 NUMBER OF TIMlES REGISTER VARIABLES
ARE REFERENCED/;X1
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TABLE B-1. SAMPLE S PREDICTOR Vi-RIABLE DESCRIPTIONS
(CONTINUED)

VARIABLE DESCR I PTI ON

X91 NUMBER OF VARIABLES WHICH WERE
REFERENCED BUT NOT DEFINED WITHIN
THE PROGRAM (UNDEFINED VARIABLE)i.
Xl

X92 NUMBER OF TIMES UNDEFINED
VARIA3LES ARE REFEPENCED/Xl

X93 TOTAL NUMBER OF VARIABLES
REFERENCED/X 1

X94 NUMBER OF TI%!ES ALL VARIABLES.
ARE REFERENCED/X1

X95 NUMBER OF DO LOOPS/Xl

X96 NUMBER OF NON-NESTED DO LOOPS/X1

X97 NUMBER OF DO LOOPS NESTED AT
SECOND LEVEL/Xl

X98 NUMBER OF DO LOOPS NESTED AT
THIRD LEVEL/Xl

X99 NUMBER OF DO LOOPS NESTED AT
FOURTH LEVEL/XI

Xl ]• NUMBER OF DO LOOPS NESTED AT
FIFTH LEVEL/;(1

XloI NUMBER OF DO LOOPS NESTED AT
SIXTH LEVEL OR LOWER/X1

X102 NUMBER OF SOURCE INSTRUCTIONS IN
ALL NON-NESTED DO LOOPS/X1

X103 NUMBER OF SOURCE INSTRUCTIONS IN
ALL SECOND LEVEL DO LOOPS/X1
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TABLE B-1. SAMPLE S PREDICTOR VARIABLE DESCRIPTIONS
(CONTINUED)

VARIABLE DESCRIPTION

Xi1L4 NUMBER OF SOURCE INSTRUCTIONS
IN ALL THIRD LEVEL DO LOOPS/X1

X105 NUMBER OF SOURCE INSTRUCTIONS
IN ALL FOURTH LEVEL DO LOOPS/X1

X10J6 NUMBER OF SOURCE INSTRUCTIONS
IN ALL FIFTH LEVEL DO LOOPS/Xl

XIj7 NUMBER OF SOURCE INSTRUCTIONS
IN ALL SIXTH LEVEL OR LOWER
DO LOOPS/XI

X148 AVERAGE NUX3ER OF OPERATORS PER
ARITHMETIC INSTRUCTION (X7) X
NUMBER OF SOURCE INSTRUCTIONS/XM

ERROR RATE /PROGRAM NUMBER OF ERRORS PER 10 LINES OF
SOURCE CODE FOUND DURING THE TEST
AND INTEGRATION PHASE OF SOFTWARE
SYSTEM DEVELOPMENT WHICH REQUIRED
A CHANGE TO THE PROGRAM'S CODE/Xl

aALL NORMALIZED VARIABLE VALUES WERE ACTUALLY COMPUTED BY

MULTIPLYING THE RESPECTIVE UNNORMALIZED VALUES BY 10/X1.
EACH NORMALIZED VARIABLE IS INTERPRETED THEN AS THE VALUE
OF THE ORIGINAL OR UNNORMALIZED VARIABLE PER 10 LINES OF
SOURCE CODE.
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TABLE 3-2. SAMPLE T PREDICTOR VARIABLE DESCRIPTIONS

VARIABLE DESCRIPTION

UNNORMALIZED:

1. TS TOTAL SOURCE STATEMENTS IN THE
PROGRAM (TS=NEX+EX)

2. LL COMPUTED LOOP COMPLEXITYa

3. IF COtiPUTED IF COMPLEXITYb

4. BR TOTAL PROGRAM BRANCHES

5. LS NUMBER OF LOGICAL STATEMENTS IN
PROGRAM

6. AP NUMBER OF DIRECT PROGRAM INTERFACES
WITH OTHER APPLICATION PROGRAMS
(NOT A COUNT OF CALLS TO OTHER
PROGRAMS)

7. SYS NUMBER OF DIRECT PROGRAM INTERFACES
WITH OPERATING SYSTEM OR SYSTEM
SUPPORT PROGRAMS (NOT A COUNT OF
CALLS TO SYSTEM PROGRAMS)

8. I/O NUMBER OF INPUT/OUTPUT STATEMENTS

IN PROGRAM

9. COMP NUMBER OF COMPUTATIONAL STATEMENTS

IN PROGRAM

10. DATA NUMBER OF DATA HANDLING STATEMENTS
IN PROGRAM

11. NEX NUMBER OF NON-EXECUTABLE STATEMENTS

IN PROGRAM

12. EX NJUMBER OF EXECUTABLE STATEMENTS IN
PROGRAM

13. TI TOTAL PROGRAM INTERFACES WITH OTHER
PROGRAMS (TI=AP + SYS)
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TABLE B-2. SAMPLE T PREDICTOR VARIABLE DESCRIPTIO;-S

(CONTINUED)

VARIABLE DESCRIPTION

14. COM NUMBER OF COMMENT STATEMENTS IN
PROGRAM (COMMENTS ARE NOT
INCLUDED IN THE COUNT OF NON-
EXECUTABLE STATEMENTS, NEX)

15. RAT AVERAGE PROGRAMMER RATING (THIS
VALUE IS AN AVERAGE BASED ON THE
RATINGS OF EACH PROGRAMMER WHO
WORKED ON THE PROGRAM)

16. WKLD AVERAGE WORKLOAD OF PROGRAMMERS
WHO WORKED ON THE PROGRAM.

17. ERRORS/PROGRAM NUMBER OF PROGRAMMING ERRORS FOUND
IN THE PROGRAM WHICH REQUIRED A
CHANGE TO THE PROGRAM'S CODE

18. RAT/WKLD RATIO OF AVERAGE PROGRAMMER
RATING TO AVERAGE PROGRAMMER
WORKLOAD

NORMALIZEDc

19. LL/TS MEASURE OF LOOP COMPLEXITY PER
100 LINES OF SOURCE CODE

20. IF/TS MEASURE OF IF COMPLEXITY PER
,10J LINES OF SOURCE CODE

21. BR/TS NUMBER OF BRANCHES PER 100 LINES
OF SOURCE CODE

22. LS/TS NUMBER OF LOGICAL STArTMENTS PER
100 LINES OF SOURCE CODE

23. AP/TS NUMBER OF APPLICATION PROGRAM
INTERFACES PER 100 LINES OF SOURCE
CODE
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Tab~le 13-2. SAMPILE T PREDICTOR VARIABLE DESCRIPTIONS (CONTINUED)

FOOTNMOTES:

a

where Q
such that Wi L

' number of loops in program at the ith
level of nesting

N -a weighting factor

.maximwn lvel of nestino used in the systean

4 - a shaving value

who ret

=nun~er r•f "IF's" in ro< ram at the ith
level oC nestinq

' a weic;iitinq factor, L:e same as indicatud
for loop copl].exity mueasutre

c All normalized variable values w•ere computed by
niultiplyi.nq the respectivu unnorc-aliized values by
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APPENDIX C

(This Appendix contains the list of

predictor variables used and eliminated

(a priori) when predicting errors and
error rate for both data samples, as

discussed in Section 5.6).
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TABLE C-1. SAMPLE S, LIST OF PREDICTOR VARIABLES USED AND
ELIMINATED (A PRIORI) WHEN PREDICTING ERRORS/

PROGRAM & ERROR RATE/PROGRAM

PROJECTS

SAMPLE S VARIABLES M B P

X 1 SOURCE INSTRUCTIONS __

X 2 ENTRY POINTS
X 3 EXIT POINTS
X 4 USING INSTRUCTIONS
X 5 COMMENT STATEMENTS
X 6 LABELED INSTRUCTIONS
X 7 ARITHMETIC INSTRUCTIONS
X 8 UNCONDITIONAL JUMPS
X 9 CALLS/LINKS
X10 SYSTEM MACROS
Xli USER MACROS
X12 EQUATE STATEMENTS
X13 COMMENTED INSTRUCTIONS
X14 LOGICAL CONNECTORS
X15 CONDITIONAL JUMPS
X16 FUNCTIONS
X17 SCALING/ROUNDING OPERATIONS
X18 SHORT DO LOOPS
X19 NESTED SHORT DO LOOPS
X20 LOCK MACROS 1
X21 INSTRUCTIONS IN SHORT DO LOOPS 1
X22 ADDRESS VARIABLES
X23 ADDRESS VARIABLE FREQUENCY
X24 BINARY VARIABLE FREQUENCY 1 1 1
X25 CHARACTER VARIABLES 1 1 1
X26 CHARACTER VARIABLE FREQUENCY I I .
X27 FIXED-POINT VARIABLES
X28 FIXED-POINT VARIABLE FREQUENCY
X29 FLOATING-POINT VARIABLES
X30 FLOATING-POIN'F VARIABLE FREQUENCY
X31 HEXADECIMAL VARIABLES 1 1 1
X32 HEXADECIMAL VARIABLE FREQUENCY 1 1
X33 LABELED-ARRAY VARIABLES
X34 LABELED-ARRAY VARIABLE FREQUENCY 2 2 2
X35 REGISTER VARIABLES
X36 REGISTER VARIABLE FREQUENCY
X37 UNDEFINED VARIABLES
X38 UNDEFINED VARIABLE FREQUENCY
X39 TOTAL VARIABLES 3 3 3
XLjO TOTAL VARIABLE FREQUENCY 3 j 3
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TABLE C-1. SAMPLE S, LIST OF PREDICTOR VARIABLES USED AND
ELIMINATED (A PRIORI) WHEN PREDICTING ERRORS/
PROGRAM & ERROR RATE/PROGRAM (CONTINUED)

PROJECTS

SAMPLE S VARIABLES M B P

X41 TOTAL DO LOOPS 3 3 3

X42 NON-NESTED DO LOOPS

X43 DO LOOPS NESTED AT 2ND LEVEL
X44 DO LOOPS NESTED AT 3RD LEVEL
X45 DO LOOPS NESTED AT 4TH LEVEL
X46 DO LOOPS NESTED AT 5TH LEVEL
X47 DO LOOPS NESTED AT 6TH LEVEL OR LOWER
X48 INSTRUCTIONS IN NON NESTED DO LOOPS
X49 INSTRUCTIONS IN 2ND LEVEL DO LOOPS
X50 INSTRUCTIONS IN 3RD LEVEL DO LOOPS
X51 INSTRUJCTIONS IN 4TH LEVEL DO LOOPS
X52 INSTRUCTIONS IN 5TH LEVEL DO LOOPS
X53 INSTRUCTIONS IN 6TH LEVEL OR LOWER

DO LOOPS
X54 SOURCE INSTRUCTIONS X AVERAGE NUMBER

OF OPERATORS/ARITIIMETIC INSTRUCTION
X55 NO. OF PROGRAMMING ERRORS FOUND DURING DEPENDENT VARIABLE

THE TEST & INTEGRATION (T&I) PHASE ERRORS/PROGRAM
X56 ENTRY POINTS/X-
X57 EXIT POINTS/Xl
X58 USING INSTRUCTIONS/X1
X59 COMMENT STATEMENTS/XI
X60 LABELED INSTRUCTIONS/Xl
X61 ARITHMETIC INSTRUCTIONS/XI /
X62 UNCONDITIONAL JUMPS/Xl
X63 CALLS/LINKS/X1 -

X64 SYSTEM MACROS/Xl
X65 USER MACROS/XI _-,

X66 EQUATE STATEMENTS/X1
X67 COMMENTED INSTRUCTIONS/X_
X68 LOGICAL CONNECTORS/XI
X69 CONDITIONAL JUMPS/Xl
X70 FUNCTIONS/X1
X71 SCALING/ROUNDING OPERATIONS/XI
X72 SHORT DO LOOPS/Xl
X73 NESTED SHORT DO LOOPS/Xl
X74 LOCK MACROS/XI 1
X75 INSTRUCTIONS IN SHORT DO LOOPS/X1 1 _.

X76 ADDRESS VARIABLES/XI
X77 ADDRESS VARIABLE FREQUENCY/X1
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TABLE C-1. SAMPLE S, LIST OF PREDICTOR VARIABLES USED AND
ELIMINATED (A PRIORI) WHEN PREDICTING LERRORS/
PROGRAM & ERROR RATE/PROGRAM (CONTINUED)

PROJECTS
SAMPLE S VARIABLES M B P

X78 BINARY VARIABLE FREQUENCY/Xl 1 1 1
X79 CHARACTER VARIABLES/X1 1 1 1
X80 CHARACTER VARIABLE FREQUENCY/X1 1 1 1
X81 FIXED-POINT VARIABLES/X1
X82 FIXED-POINT VARIABLE FREQUENCY/X1
X83 FLOATING-POINT VARIABLES/X_
X84 FLOATING-POINT VARIABLE FREQUENCY/X1
X85 HEXADECIMAL VARIABLES/X1 1 1 1
X86 HEXADECIMAL VARIABLE FREQUENCY/Xl 1 1 1
X87 LABELED-ARRAY VARIABLES/X1
X88 LABELED-ARRAY VARIABLE FREQUENCY/X1 2 2 2
X89 REGISTER VARIABLES/X_
x90 REGISTER VARIABLE FREQUENCY/Xl
X91 UNDEFINED VARIABLES/X1 , __. .

X92 UNDEFINED VARIABLE FREQUENCY/X_
X93 TOTAL VARIABLES/X1 3 3 3
X94 TOTAL VARIABLE FREQUENCY/X1 3 3 3
X95 TOTAL DO LOOPS/Xl 3 3 3
X96 NON-NESTED DO LOOPS/X1
X97 DO LOOPS NESTED AT 2ND LEVEL/X_
X98 DO LOOPS NESTED AT 3RD LEVEL/X1
X99 DO LOOPS NESTED AT 4TH LEVEL/X_
X100 DO LOOPS NESTED AT 5THi LEVEL/X1
X101 DO LOOPS NESTED AT 6TH LEVEL OR

LOWER/X1
X102 INSTRUCTIONS IN NON NESTED DO

LOOPS/X1
X103 INSTRUCTIONS IN 2ND LEVEL DO LOOPS/X1
X104 INSTRUCTIONS IN 3RD LEVEL DO LOOPS/X1
X105 INSTRUCTIONS IN 4TH LEVEL DO LOOPS/X1
X106 INSTRUCTIONS IN 5TH LEVEL DO LOOPS/X1 .__
X107 INSTRUCTIONS IN 6TH LEVEL OR LOWER _

DO LOOPS/XI
X108 SOURCE INSTRUCTIONS X AVERAGE NUMUER

OPERATORS/ARI Tt. INSTRUCTION/X1
X109 (No. OF PROGRAMMING ERRORS FOUHD DEPENDENT VARIABLE,

DURING TSI PHASE)/X1 ERROR RATE/PGM.
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TABLE C-i. SAMPLE S, LIST OF PREDICTOR VARIABLES USED AND

ELIMINATED (A PRIORI) WHEN PREDICTING ERRORS/
PROGRAM & ERROR RATE/PROGRAM

FOOTNOTES

THE EMPTY CELLS IN THIS TABLE ARE USED TO IDENTIFY THOSE
PREDICTOR VARIABLES THAT WERE MADE AVAILABLE FOR AUTO-
MATIC SELECTION BY THE STEPWISE REGRESSION PROCEDURE FOR
ENTRY INTO THE PREDICTION EQUATION.

A PRIORI VARIABLE ELIMINATION CRITERIA

THE VARIABLES' DATA VALUES WERE ALL ZERO IN THE SAMPLE.
(APPARENTLY, THE VARIABLES COULD HAVE BEEN UNAVAILABLE,
NOT COLLECTED OR COUNTED DURING THE PROGRAM SCANNING
OPERATION, NON-EXISTENT, OR NOT APPLICABLE IN THE
PROGRAMS THAT WERE USED FOR THIS ANALYSIS).

2 THE VARIABLE WAS HIGHLY CORRELATED WITH ANOTHER PREDICTOR
VARIABLE, (NOTE: THE CORRELATION COEFFICIENTS, R 33

AND RX8 7 ,X8', WERE FOUND TO BE 1.0J• IN EACH PROJECT'X

SAMPLE; THEREFORE ONLY ONE VARIABLE FROM EACH PAIR,

X33 AND X87 RESPECTIVELY, WERE MADE AVAILABLE FOR
SELECTION IN THE STEPWISE REGRESSION PROCEDURE).

3 THE VARIABLE IS A LINEAR COMBINATION OF OTHER PREDICTOR
VARIABLES. NOTE:

X39 = X22 + X25 + X27 + X29 + X31 + X33 + X35 + X37
X40 = X23 + X24 + X26 + X28 + X30 + X32 + X34 + X36 + X38
X41 = XI8 + X19 + X42 + X43 + X44 + X45 + X46 + X47
X93 = X76 + X79 + X81 + X83 + X85 + X87 + X89 + X91
X94 = X77 + X78 + X8yi + X82 + X84 4- X86 + X88 + X90 + X92
X95 = X72 + X73 + X96 + X97 + X98 + X99 + X100 + X101
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TABLE C-2. SAMPLE T, LIST OF PREDICTOR VARIABLES USED AND
ELIMINATED (A PRIORI) WHEN PREDICTING ERRORS/

PROGRAM

PROGRAM STRUCTURE +
PROGRAMMER VARIABLES PROGRAM STRUCTURE VARIABLES ONLY

!}SUBSYSTEM SUBSYSTEM

VARIABLE A B C D E A B c D E F G H

1. TS
2. LL
3. IF
4.BR 1 11111 1 1 1 1 1 1 1
5. LS I 1 i 1 1 1 1 1
6. AP
7. SYS
8. 1/0

COMP
10. DATA 1 1 1 1 1 1
11 . NEX 2 2 2 2 2 2 2 2 2 2 2 2 2 2
12. EX 1 1 1 1 1 1 1 1 1 1 1 1 1 1
13. TI 2 2 2 2 2 2 2 2 2 2 2 2 2 2
14. COM
15. RAT 3 3 3 3 3 3 3 3
16. WKLD 3 3 3 3 3 3 3 3
17. RAT/ 3 3 3 3 3 3 3 3

WKLD
18. LL/TS
19. IF!TS
2•. BR/TS
21. LS/TS
22. AP/TS
23. SYS/TS
24 bIO/TS
25. COMP/TS
26. DATA/TS
27. NEX/TS 2 2 2 2 2 2 2 2 2 2 2 2 2 2
28. EX/TS
29. TI/TS 2 2 2 2 2 2 2 2 2 2 2 2 2 2
30. COM/TS
TOTAL 23 23 23 23 23 23 20 20J 20 2, 20 20 20 2xJ

PREDIC-
TORS USED ___
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TABLE C.-2. SAMPLE T, LIST OF PREDICTOR VARIABLES USED AND
ELIMINATED (A PRIORI) WHEN PREDICTING ERRORS/
PROGRAM (CONTINUED)

THE EMPTY CELLS IN THIS TABLE ARE USED TO IDENTIFY THOSE
PREDICTOR VARIABLES THAT WERE MADE AVAILABLE FOR AUTOMATIC

SELECTION BY THE STEPWISE REGRESSION PROCEDURE FOR ENTRY
INTO THE PREDICTOR EQUATION.

A PRIORI VARIABLE ELIMINATION CRITERIA

1 THE VARIABLE WAS HIGHLY CORRELATED WITH ANOTHER PREDICTOR
VARIABLE.

2,
THE VARIABLE IS A LINEAR COMBINATION OF OTHER PREDICTOR
VARIABLES.

NEX TS-EX
TI = AP+SYS
NEX/TS = 1-EX/TS
TI/TS = AP/TS+SYS/TS

3 THE VARIABLE WAS NOT APPLICABLE FOR THIS SET OF COMPUTER RUNS.

(NOTE - ONE OF THE FOUR PREDICTORS (BR, LS, DATA, EXD HAVING

THE HIGHEST CORRELATION WITH ERRORS, AND THE TS VARI-

ABLE, WERE BOTH MADE AVAILABLE FOR SELECTION. EACH
PREDICTOR THEN COULD BE SWAPPED FOR THE OTHER (SINCE

ALL FIVE PREDICTORS WERE HIGHLY CORRELATED) USING THE

FSWAP SELECTION ALGORITHM).
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TABLE C-3. SAMPLE T, LIST OF PREDICTOR VARIABLES USED AND
ELIMINATED (A PRIORI) WHEN PREDICTING ERROR
RATE/PROGRAM

PROGRAM STRUCTURE +PROGRAMMER STRUREABLEPROGRAM STRUCTURE VARIABLES
PROGRAMMER VARIABLES ONLY

SUBSYSTEM SUBSYSTEM
VARIABLE A B C D E F A B C D E F G H

1. TS
2. LL
3. IF
4. 1 1 1 1 1 1 1 1
5. LS 1 1 1 1 1
6. AP
7. SYS
8. I/O
9. COMP

10 DATA 1 1 1 1 1 1 1 1 1 1 1 1 1
11. NEX 2 2 2 2 2 2 2 2 2 2 2 2 2
12. EX 1 1 1 1 1 1 i 1 1 1 1 1
13. TI 2 2 2 2 2 2 2 2 2 2 2 2 2 2
14. CON
15. RAT 3 3 3 3 3 3 3 3
16. WKLD 3 3 3 3 3 3 3 3
17. RAT/ 3 3 3 3 3 3 3 3

WKLD
18. LL/TS
19. IF/TS
20. BR/TS
21. LS/TS
22. AP/T3
23. SYS/TS
24. IOITS
25. COMP/TS
26. DATA/TS
27. NEX/TS 2 2 2 2 2 2 2 2 2 2 2 2 2 2
23. EX/TS
29. TI/TS 2 2 2 2 2 2 2 2 2 2 2 2 2 2
30I. COM/TS
TOTAL 23 23 23 23 23 23 20 20 20 20 20 20 20 20
PREDIC-
TORS USED
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TABLE C-3. SAMPLE T, LIST OF PREDICTOR VARIABLES USED AND
ELIMINATED (A PRIORI) WHEN PREDICTING ERROR
RATE/PROGRAII (CONTINUED)

THE EMPTY CELLS IN THIS TABLE ARE USED TO IDENTIFY THOSE
PREDICTOR VARIABLES THAT WERE MADE AVAILABLE FOR AUTOMATIC
SELECTION BY THE STEPWISE REGRESSION PROCEDURE FOR ENTRY
INTO THE PREDICTION EQUATION.

A PRIORI VARIABLE ELIMINATION CRITERIA

1
THE VARIABLE WAS HIGHLY CORRELATED WITH ANOTHER PREDICTOR
VARIABLE.

2 THE VARIABLE IS A LINEAR COMBINATION OF OTHER PREDICTOR

VARIABLES.

NEX TS-EX
TI AP+SYS
NEX/TS 1 --EX/rs
TI/TS AP/TS+SYS/TS

3 THE VARIABLE WAS NOT APPLICABLE FOR THIS SET OF COMPUTER RUNS.

(NOTE - ONE OF THE FOUR PREDICTORS (BR, LS, DATA, EX) HAVING
THE HIGHEST CORRELATION WITH ERROR RATE)AND Ti-r TS

VARIABLE, WERE [30TH MADE AVAILABLE FOR SELECTION.
EACH PREDICTOR THEN COULD BE SWAPPED FOR THE OTHER
(SINCE ALL FIVE PREDICTORS WERE HIGHLY CORRELATED)

USING ,:E FSWAP ALGORITHM).
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METRIC SYSTEM

BASE UNITS:
Quatiy nit SI Symbol Formula

length kilogram kg..

~lrime curn eprtr econd K

amount of substance mole u

luminous intenaity candula cd..

SUPPLMENTARY UNITS:

plaice angle radian rad

solid angle steradian sr

DERIVE UNITS:

Acceleration metre per second ~iquared rn/S

aciit of aradioactive sucl disintegration per second tad/silgaons

angular acceleration radian per second squared rai

angular velocity radian per second .. radis

area square metre ...

density kilogram per cubit. metre kg/rn

electric capacitance farad F A-saN

electrical coflducitancf siewens S AN\

electric field strength volt per metre Vnim

electric; inductsance henry If V-a/A

ale( tric; potential difference volt V W/A

qclcictric: resistance ohm VIA

eletdromotive form! volt V W/A

erc.!rgy joule IN-nc
entropy joule per kolvin)I

force newton N kg-mis

frequenc~y hertz tix (yle/m

illumninance lux xIM

luminance candela per square metre cd/in

lumcinocus flux lumen Ink cd-sr

magnetic field strength ampore per metre A/rn

moagnetic flux webor Wb Va8

ncagntkc flux density tesla T Wb/m

nicgnetomot ive furce ampere A

prcwier watt W jig

prvssurtre Paiscal Ila N/rn

qi cant ity oft elect ric:ity c~co I'nmb (A-s

(ji~t]at it Y of heat cccl le N-rn

rdatitniywatl pcer stecariiac Wisr

rpcificn inenaty iclc pm kcloigrcccc kelvin lk.

vstrs pastc Il I'd Nim

thi-rccal cocnducltivily wall p),r mit e.kcdviin 1W!m.K

v.lucit( Iy crccctrc. per aeccccc mi/a

i s~~cy lynatccu peas ;ci-smomcccI PH-5

visc(ccsity. kinec-gtic scquari metre pccr seccccc nI/s

vccllagi! voclt VWA

volum oe c miic cetrco nm

wvciic' unibccr rec' iicrccia tinth c wavel/ni

Wi irk ccu le N

SI PREFIXES:

Multipl ictimo tFactors t~reicf 81S Symbol

1IO 000 000cc Wjc1tc c 101c ci'ra
I (/11/cci 0/tic~) I ci. gigs G

1tt 0 o0 000 ' niocge K1
1icclc - 0c k/ic k

00 tIc, hoctoc h

itt )o, ioka' da

c i icc cliiW *Ci

ccc~l tic 11ililii

i) c0c10 0u0 1 c ronicrcc kL

0cic00 ct/0c tcc1ci 0cc0 1 o 2 1c/co p

Io be cavoidedic cvher possibli-
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MISSION
Qf

Rome Air Development Center

RADC plans and conducts research, exploratory and advanced
development programs in command, control, and communications
(C-) activities, and in the C3 areas oZ information soien•Jes
and intelligence. The principal technical mission areas
are communications, eluctromagnetic guidance and ogntrol,
surveillance of ground and aerospace objects, intelligence
data collection and handling, information system technology,
ionospheric propagation, solid state sciences, miczowave
physics and electronic reliability, maintainability and
compatiLbili ty.
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